

中华人民共和国通信行业标准

YD/T 1251.1-2003

路由协议一致性测试方法 ——中间系统到中间系统路由交换协议 (IS-IS)

The conformance testing specification for intermediate system to intermediate system routing exchange protocol (IS-IS)

2003-01-22 发布

2003-01-22 实施

目 次

旫	百 ······	П
1	范围 ····································	1
2	规范性引用文件	1
3	定义与缩略语	
4	測试配置	2
5	IS-IS Level1 路由广播测试 ······	
6	IS-IS Level2 路由广播测试 ······	11
7	IS-IS Level1 点到点链路测试 ·····	15
8	IS-IS Level2 点到点链路测试	27
9	IS-IS Level1/2 点到点测试 ······	38
10	IS-IS L1 IP 认证 ······	41
11	IS-IS L2 IP 认证 ······	
12	IS-IS L1 OSI 认证 ·····	51
13		
14	/ 18	
15	IS-IS L2 广播测试 (19) ····································	79

前 言

本部分是"路由协议一致性测试方法"系列标准之一。该系列标准的结构及名称如下:

- 1. YD/T 1251.1-2003《路由协议一致性测试方法——中间系统到中间系统路由交换协议(IS-IS)》
- 2. YD/T 1251.2—2003 《路由协议—致性测试方法——开放最短路径优先协议 (OSPF)》
- 3. YD/T 1251.3-2003《路由协议-致性测试方法---边界网关协议(BGP4)》

本部分由中国通信标准化协会提出并归口。

本部分起草单位:信息产业部电信传输研究所

华为技术有限公司

深圳市中兴通讯股份有限公司

本部分主要起草人:魏 亮 刘 宇

路由协议一致性测试方法 ----中间系统到中间系统路由交换协议(IS-IS)

1 范围

本部分规定了中间系统到中间系统路由交换协议(IS-IS)的一致性测试方法,包括 Levell和 Level2 的路由广播测试,点到点、点到点链路测试、IP 认证、OSI 认证以及广播测试。

本部分适用于运行 IS-IS 协议的高、低端路由器或其他设备。

2 规范性引用文件

下列文件中的条款通过本部分的引用而成为本部分的条款。凡是注日期的引用文件,其随后所有的修 改单(不包括勘误的内容)或修订版均不适用于本部分,然而、鼓励根据本部分达成协议的各方研究是否 可使用这些文件的最新版本。凡是不注日期的引用文件、其最新版本适用于本部分。

YD/T 1096-2001 路由器设备技术规范---低端路由器

YD/T 1097-2001 路由器设备技术规范---高端路由器

YD/T 1098-2001 路由器测试规范---低端路由器

YD/T 1156-2001 路由器测试规范---高端路由器

ISO/IEC 10589 信息技术 系统间的远程通讯和信息交换中间系统到中间系统的用于连接在无

连接方式网络服务 (ISO 8473) 下协议的域内路由交换协议

RFC1195 OSI IS-IS 用于 TCP/IP 和双重环境下的路由的使用

3 定义与缩略语

3.1 定义

点到点子网,只能进行点到点通信的子网,子网上只有两个通信对端。

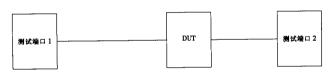
广播子网: 支持任一数量主机和路由器的通信子网、对应 SN UNITDATA 只传输一个 SNPDU。

伪节点: 广播子网上存在多个中间系统时、广播子网本身作为伪节点。

区域: 维护内部详细路由信息的路由子域。

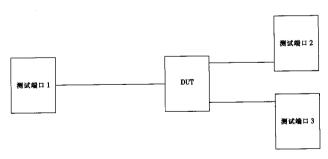
邻居: PDU 可以通过一个子网到达的系统。

路由子域: 在同一路由域中中间系统和端系统的子集。


3.2 缩略语

AFI	Authority and Format Identifier	授权和格式标识符
CLNP	Connection-Less Network Protocol	无连接网络协议
CSNP	Complete Sequence Numbers Protocol Data Unit	完全序列号协议数据单元
DBOL	Database Overload	数据库溢出 .
DFI	DSP Format Identifier	DSP 格式标识符
ES	End System	终端系统
ES-IS	End System to Intermediate System Routing	终端系统和中间系统路由交换协议
	Exchange Protocol	
ICD	International Code Designator	国际编码设计
IP	Internetwork Protocol	互联网协议

互联网协议


IS	Intermediate System	中间系统
IS-IS	Intermediate System to Intermediate System	中间系统到中间系统路由交换协议
13-15	Routing Exchange Protocol	
****	2	IS-IS 协议定义的 Hello 包
IIH	An Hello packet defined by the IS-IS protocol	
ISH	An Hello packet defined by ISO 9542	ES-IS 协议定义的 Hello 包
LSP	Link State Packet	链路状态包
NLPID	Network Layer Protocol ID	网络层协议 ID
NSAP	Network Service Access Point	网络服务接人点
NSDU	Network Service Data Unit	网络服务数据单元
NPDU	Network Protocol Data Unit	网络协议数据单元
SEL	NSAP Selector	NSAP 选择符
SNP	Sequence Numbers Protocol Data Unit	序列号协议数据单元
OSI	Open Systems Interconnection	开放系统互联
PDU	Protocol Data Unit	协议数据单元
RD	Routing Domain	路由区域
PSNP	Partial Sequence Numbers Protocol Data Unit	部分序列号协议数据单元
SNPA	Subnetwork Point of Attachment	子网接人点
SNPDU	Subnetwork Protocol Data Unit	子网协议数据单元
SNSDU	Subnetwork Service Data Unit	子网服务数据单元
TCP	Transmission Control Protocol	传输控制协议
ZRLT	Zero Remaining Lifetime	剩余生存时间为 0

4 測试配置

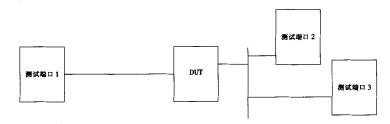

注: 测试端口1用作流量发生, 测试端口2用作模拟路由器

图 1 測试连接 1

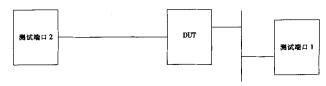

注:测试端口1用作流量发生,测试端口2、3用作模拟路由器

图 2 测试连接 2

注:测试端口1模拟路由器用作验证,测试端口2、3用作模拟路由器

图 3 测试连接 3

注:测试端口1模拟路由器用作验证,测试端口2用作模拟路由器

图 4 测试连接 4

5 IS-IS Level 1 路由广播测试

(1) 与 Level 1 直连主机通信 1

测试编号:1

测试项目: IS-IS1_c_route_direct_to_direct_connected_host

测试目的:验证 DUT 能到达 IIH 中发布的直连 IP 地址,该地址不包含在 LSP 中可达地址。

测试依据: RFC1195 3.1

测试配置:测试连接1

测试过程:

- 1) 正确连接设备。
- 2) 将测试端口与被测设备建立邻接关系。
- 3) 测试端口1向测试端口2发送流量。

预期结果:测试端口2收到流量发生器所发流量。

测试说明:

测试编号:2

测试项目: IS-IS1_c_route_to_rechable_host_entry

测试目的: 确保 DUT 能访问发布为可访问的主机。该信息包含在测试中插入的 LSP 中。

测试依据: RFC1195 3.1

测试配置:测试连接1

漏试过程.

- 1) 正确连接设备。
- 2) 将测试端口与被测设备建立邻接关系,测试端口2不向 DUT 发送包含 N1 信息的 LSP。
- 3) 测试端口1向测试端口2发送流量。
- 4) 从测试端口 2 向 DUT 发送包含 H1 信息的 LSP。
- 5) 从测试端口1向H1发送流量。

预期结果:

测试步骤 3 中测试端口 2 无法收到测试端口 1 所发送的流量。

测试步骤5中测试端口2收到测试端口1所发流量。

测试说明: N1 指测试端口 2 所模拟地网络, H1 指模拟网络上的模拟主机。

判定原则:测试结果符合预期结果则通过,否则不通过。

(3) 与 Level 1 可达网络通信 1

测试编号:3

测试项目: IS-IS1_c_route_to_reachable_network_entry

测试目的: 验证 DUT 能向发布为可达的网络发送数据。该信息包含在测试中插入的 LSP。

测试依据: RFC1195 3.1

测试配置: 测试连接1

测试过程:

- 1) 正确连接设备。
- 2) 将测试端口与被测设备建立邻接关系。
- 3) 测试端口1向测试端口2发送流量。
- 4) 从测试端口 2 向 DUT 发送包含 N1 信息的 LSP。
- 5) 从测试端口1向N1发送流量。

预期结果:

测试步骤 3 中测试端口 2 无法收到测试端口 1 所发送的流量。

测试步骤 5 中测试端口 2 收到测试端口 1 所发流量。

测试说明: N1 指测试端口 2 所模拟地网络, H1 指模拟网络上的模拟主机。

(4) Level 1 路由器不同 metrics 测试

测试编号: 4

测试项目: IS-IS1_c_route_different_metrics

测试目的:验证当存在2条路径时,DUT能通过较低代价的路径发送数据。

测试依据: ISO/IEC 10589 7.2.12

测试配置:测试连接2

测试过程:

- 1) 正确连接设备。
- 2) 将测试端口与被测设备建立邻接关系。
- 3) 测试端口1向测试目标子网发送流量。
- 4) 发送一个新的 LSP 使通过接口 2 到达的代价增加。
- 5) 从测试端口1向目标子网发送流量。

预期结果:

测试步骤 3 中通过测试端口 2 收到测试端口 1 所发送的流量。

测试步骤5中通过测试端口3收到测试端口1所发流量。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(5) Level 路由器 DBOL 測试 1

测试编号:5

测试项目: IS-IS1_c_dont_route_thru_dbol

测试目的:验证 DUT 选择穿过设置 DBOL 的路由器 (直连)的路径。

测试依据: ISO/IEC 10589 7.3.23

测试配置:测试连接1

测试过程:

- 1) 正确连接设备。
- 2) 将测试端口与被测设备建立邻接关系。
- 3) 测试端口1向测试端口2发送流量。
- 4) 将测试端口2置于 DBOL 状态。
- 5) 从测试端口1向N1发送流量。

预期结果:

测试步骤 3 中测试端口 2 收到测试端口 1 所发送的流量。

测试步骤5中测试端口2收到测试端口1所发流量。

测试说明: N1 指测试端口 2 所模拟的直连网络, H1 指模拟网络上的模拟主机。

(6) Level 路由器 DBOL 测试 2

测试编号: 6

测试项目: IS-IS1_c_ dont_route_thru_dbol2

测试目的:验证 DUT 不选择穿过设置 DBOL 的路由器 (远端) 的路径。

测试依据: ISO/IEC 10589 7.3.23

测试配置:测试连接2

测试过程:

- 1) 正确连接设备。
- 2) 将测试端口与被测设备建立邻接关系。
- 3) 测试端口1向测试端口2发送流量。
- 4) 发送 LSP 将逻辑上连接在测试端口 2 上的 DUT 置于 DBOL 状态。
- 5) 从测试端口1向 N1 发送流量。

预期结果:

测试步骤 3 中测试端口 2 收到测试端口 1 所发送的流量。

测试步骤 5 中测试端口 3 收到测试端口 1 所发流量。

测试说明: N1 指测试端口 2 所模拟地网络, H1 指模拟网络上的模拟主机。

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(7) Level 1 路由器 att 标志测试

测试编号:7

测试项目: IS-IS1_c_ route_L1_to_L2_attatched_flag

测试目的: 验证 DUT 能正确向 L2 路由器转发目标是 Area 外的数据。

测试依据: ISO/IEC 10589 7.2.12

测试配置: 测试连接1

测试过程:

- 1) 正确连接设备。
- 2) 将测试端口与被测设备建立邻接关系。
- 3) 测试端口1向 Area 外目标子网发送流量。
- 4) 在测试端口 2 设置 att 比特。
- 5) 从测试端口 1 向 Area 外目标子网发送流量。

预期结果:

测试步骤 3 中测试端口 2 无法收到测试端口 1 所发送的流量。

测试步骤 5 中测试端口 2 收到测试端口 1 所发流量。

测试说明:

(8) Level 2 路由器产生 L2 标志测试

测试编号:8

测试项目: IS-IS_L2_attatched_flag

测试目的: 验证 DUT 能作为 L2 路由器发送 L2 标志。

测试依据: ISO/IEC 10589 7.2.12

测试配置:测试连接4

测试过程:

- 1) 正确连接设备。
- 2) 将测试端口与被测设备建立邻接关系。
- 3) 配置 DUT 为 L12 路由器。
- 4) 从测试端口 1 验证携带 L2 标志。

预期结果:

测试步骤 4 中测试端口 1 收到 L2 标志。

测试说明:

判定原则:测试结果符合预期结果则通过,否则不通过。

(9) Level 1 路由器对多个 L2 标志选择

测试编号:9

测试项目: IS-IS1_c_ route_L1_to_ cheapest_L2_attatched_flag

测试目的:验证 DUT 能在多个有 att 属性的 L2 路由器正确选择恰当的路由器转发目标是 Area 外的数据。

测试依据: ISO/IEC 10589 7.2.12

测试配置:测试连接2

测试过程:

- 1) 正确连接设备。
- 2) 将测试端口与被测设备建立邻接关系。
- 3) 测试端口1向目标子网发送流量。
- 4) 提高到达接口2的 metric。
- 5) 从测试端口1向目标子网发送流量。

预期结果:

测试步骤 3 中测试端口 2 收到测试端口 1 所发送的流量。

测试步骤5中测试端口3收到测试端口1所发流量。

测试说明:

(10) 外部 metric 測试

测试编号:10

测试项目: IS-IS1_c_inv_ignore_external_metric

测试目的:验证 DUT 能忽略外部 metric 正确选择恰当的路由器转发目标是 Area 外的数据。

测试依据:

测试配置:测试连接2

测试过程:

- 1) 正确连接设备。
- 2) 将测试端口与被测设备建立邻接关系, 初始时端口 2 metric 较小。
- 3) 测试端口1向目标子网发送流量。
- 4) 提高到达接口 2 的 L2 的外部 metric。
- 5) 从测试端口1向目标子网发送流量。

预期结果:

测试步骤 3 中测试端口 3 收到测试端口 1 所发送的流量。

测试步骤5中测试端口2收到测试端口1所发流量。

测试说明:

判定原则:测试结果符合预期结果则通过,否则不通过。

(11) L1 路由器 LSPO 测试

测试编号: 11

测试项目: IS-IS1_c_ no_route_wo_LSP0

测试目的:验证 DUT 不向没有发送 LSP#0 的路由器转发数据。

测试依据: ISO/IEC 10589 7.2.5

测试配置: 测试连接1

测试过程:

- 1) 正确连接设备。
- 2) 将测试端口与被测设备建立邻接关系。
- 3) 测试端口1向目标子网发送流量。
- 4) 在测试端口 2 发送虚拟路由器的 LSP#0。
- 5) 从测试端口1向目标子网发送流量。

预期结果:

测试步骤 3 中测试端口 2 无法收到测试端口 1 所发送的流量。

测试步骤 5 中测试端口 2 收到测试端口 1 所发流量。

测试说明:

(12) 非 0 LSP 中 att 标志测试

测试编号: 12

测试项目: IS-IS1_c_inv_reject_attached_from_LSPx

测试目的: 验证 DUT 忽略非 0 LSP 中 att 标志。

测试依据: ISO/IEC 10589 7.2.5

测试配置:测试连接1

测试过程:

- 1) 正确连接设备。
- 2) 将测试端口与被测设备建立邻接关系。
- 3) 测试端口1向目标子网发送流量。
- 4) 在测试端口 2 发送虚拟路由器的 LSP#0。
- 5) 从测试端口1向目标子网发送流量。

预期结果:

测试步骤 3 中测试端口 2 无法收到测试端口 1 所发送的流量。

测试步骤5中测试端口2收到测试端口1所发流量。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(13) L1 路由器非 0 LSP 中 DBOL 标志测试

测试编号: 13

测试项目: IS-IS1_c_inv_ignore_dbol_from_LSPx

测试目的: 验证 DUT 忽略非 0 LSP 中 DBOL 标志。

测试依据: ISO/IEC 10589 7.2.8.1

测试配置:测试连接1

测试过程:

- 1) 正确连接设备。
- 2) 将测试端口与被测设备建立邻接关系。
- 3) 测试端口1向目标子网发送流量。
- 4) 在测试端口 2 发送虚拟路由器的 LSP#0, 包含 DBOL 标志。
- 5) 从测试端口1向目标子网发送流量。

预期结果:

测试步骤 3 中测试端口 2 收到测试端口 1 所发送的流量。

测试步骤5中测试端口2无法收到测试端口1所发流量。

测试说明:

(14) IS-IS L1 广播网全 0 优先级时小 MAC 地址选举失败测试

测试编号: 14

测试项目: IS-IS1 c DUT Opriority loses MACaddr_election

测试目的:验证优先级相同为0时较大的MAC地址能够获胜选举。

测试依据: ISO/IEC 10589 8.4.6.1

测试配置: 测试连接3

测试过程:

- 1) 正确连接设备,配置优先级为 0,接口 1 MAC 地址较大。
- 2) 待接口1与 DUT 建立邻接关系。

预期结果:

步骤 2 后验证 DUT 不发送伪节点 LSP。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(15) IS-IS 路由选择测试

测试编号: 15

测试项目: IS-IS_select_best route

测试目的:验证 IS-IS 路由器能够选择最佳路由。

测试依据: RFC1195

测试配置:测试连接2

测试过程:

- 1) 正确连接设备,将端口1、2、3与 DUT 建立邻接关系。
- 2) 由端口2、3发送同一个虚拟网络(通过端口2是最佳路由)。
- 3) 由端口1向虚拟网络发送流量。

预期结果:

端口2收到所发送流量。

测试说明:

6 IS-IS Level 2 路由广播测试

(1) 与 Level 2 直连主机测试通信 1

测试编号: 16

测试项目: IS-IS_c_route_to_direct_connected_host

测试目的:验证 DUT 能到达 IIH 中发布的直连 IP 地址,该地址不包含在 LSP 中可达地址。

测试依据: RFC1195 3.1

测试配置: 测试连接1

测试过程:

- 1) 正确连接设备。
- 2) 将测试端口与被测设备建立邻接关系。
- 3) 测试端口1向测试端口2发送流量。

预期结果:测试端口2收到流量发生器所发流量。

测试说明:

判定原则、测试结果符合预期结果则通过、否则不通过。

(2) 与 Level 2 直连主机通信测试 2

测试编号: 17

测试项目: IS-IS2_c_route_to_reachable_host_entry

测试目的: 验证 DUT 能向主机发送数据, 通告其可达性。

测试依据: RFC1195 3.1

测试配置:测试连接1

测试过程:

- 1) 正确连接设备。
- 2) 将测试端口与被测设备建立邻接关系。测试端口 2 不向 DUT 发送包含 N1 信息的 LSP。
- 3) 测试端口1向测试端口2发送流量。
- 4) 从测试端口 2 向 DUT 发送包含 H1 信息的 LSP。
- 5) 从测试端口1向H1发送流量。

预期结果:

步骤3中测试端口2无法收到测试端口1所发流量。

步骤5中测试端口2可以收到测试端口1所发流量。

测试说明: N1 指测试端口 2 所模拟地网络, H1 指模拟网络上的模拟主机。

(3) 与 Level 2 可达网络通信 1

测试编号: 18

测试项目: IS-IS1_c_route_to_reachable_network_entry

测试目的:验证 DUT 能向发布为可达的网络发送数据,该信息包含在测试中插人的 LSP。

测试依据, RFC1195 3.1

测试配置:测试连接1

测试过程:

- 1) 正确连接设备。
- 2) 将测试端口与被测设备建立邻接关系。
- 3) 测试端口1向测试端口2发送流量。
- 4) 从测试端口 2 向 DUT 发送包含 N1 信息的 LSP。
- 5) 从测试端口1向N1发送流量。

预期结果:

测试步骤3中测试端口2无法收到测试端口1所发送的流量。 测试步骤5中测试端口2收到测试端口1所发流量。

测试说明: N1 指测试端口 2 所模拟地网络, H1 指模拟网络上的模拟主机。

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(4) Level 2 路由器不同 metrics 測试

測试編号: 19

测试项目: IS-IS2_c_route_different_metrics

测试目的:验证当存在2条路径时,路由器能通过较低代价的路径发送数据。

测试依据, ISO/IEC 10589 7.2.12

测试配置:测试连接2

测试过程:

- 1) 正确连接设备。
- 2) 将测试端口与被测设备建立邻接关系。
- 3) 测试端口1向测试目标子网发送流量。
- 4) 发送一个新的 LSP 使通过接口 2 到达的代价增加。
- 5) 从测试端口1向目标子网发送流量。

预期结果:

测试步骤 3 中通过测试端口 2 收到测试端口 1 所发送的流量。

测试步骤5中通过测试端口3收到测试端口1所发流量。

测试说明:

(5) Level 2 路由器 DBOL 測试 1

测试编号: 20

测试项目: IS-IS2_c_dont_route_thru_dbol

测试目的:验证 DUT 不选择穿过设置 DBOL 的路由器(直连)的路径。

测试依据: ISO/IEC 10589 7.3,23

测试配置:测试连接1

测试过程:

- 1) 正确连接设备。
- 2) 将测试端口与被测设备建立邻接关系。
- 3) 测试端口1向测试端口2发送流量。
- 4) 将测试端口2置于 DBOL 状态。
- 5) 从测试端口1向N1发送流量。

预期结果:

测试步骤 3 中测试端口 2 收到测试端口 1 所发送的流量。

测试步骤 5 中测试端口 2 无法收到测试端口 1 所发流量。

测试说明: N1 指测试端口 2 所模拟地网络, H1 指模拟网络上的模拟主机。

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(6) Level 2 路由器 DBOL 测试 2

测试编号:21

测试项目: IS-IS2 c dont route thru dbol 2

测试目的:验证 DUT 不选择穿过设置 DBOL 的路由器 (远端)的路径。

测试依据: ISO/IEC 10589 7.3.23

测试配置:测试连接1

测试过程:

- 1) 正确连接设备。
- 2) 将测试端口与被测设备建立邻接关系。
- 3) 测试端口1向测试端口2发送流量。
- 4) 发送 LSP 将逻辑上连接在测试端口 2 上的路由器置于 DBOL 状态。
- 5) 从测试端口1向N1发送流量。

预期结果:

测试步骤 3 中测试端口 2 收到测试端口 1 所发送的流量。

测试步骤 5 中测试端口 3 收到测试端口 1 所发流量。

测试说明: N1 指测试端口 2 所模拟地网络, H1 指模拟网络上的模拟主机。

(7) L2 路由器 LSPO 测试

测试编号: 22

测试项目: IS-IS2_c_ no_route_wo_LSP0

测试目的:验证 DUT 不向没有发送 LSP#0 的路由器转发数据

测试依据: ISO/IEC 10589 7.2.5

测试配置:测试连接1

测试过程:

- 1) 正确连接设备。
- 2) 将测试端口与被测设备建立邻接关系。
- 3) 测试端口1向目标子网发送流量。
- 4) 在测试端口 2 发送虚拟路由器的 LSP#0。
- 5) 从测试端口1向目标子网发送流量。

预期结果:

测试步骤 3 中测试端口 2 无法收到测试端口 1 所发送的流量。

测试步骤 5 中测试端口 2 收到测试端口 1 所发流量。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(8) L2 路由器外部 metric 测试

测试编号: 23

测试项目: IS-IS2_c_inv_ignore_external_metric

测试目的:验证 DUT 能忽略外部 metric 正确选择恰当的路由器转发目标是 Area 外的数据。

测试依据:

测试配置:测试连接1

测试过程:

- 1) 正确连接设备。
- 2) 将测试端口与被测设备建立邻接关系。
- 3) 测试端口1向目标子网发送流量。
- 4) 提高到达接口 2 的 L2 的 metric。
- 5) 从测试端口1向目标子网发送流量。

预期结果:

测试步骤 3 中测试端口 2 收到测试端口 1 所发送的流量。 测试步骤 5 中测试端口 3 收到测试端口 1 所发流量。

测试说明:

(9) L2 路由器非 0 LSP 中 DBOL 标志测试

测试编号: 24

测试项目: IS-IS2_c_inv_ignore_dbol_from_LSPx

测试目的:验证 DUT 忽略非 0 LSP 中 DBOL 标志

测试依据: ISO/IEC 10589 7.2.8.1

测试配置:测试连接1

测试过程:

- 1) 正确连接设备。
- 2) 将测试端口与被测设备建立邻接关系。
- 3) 测试端口1向目标子网发送流量。
- 4) 在测试端口 2 发送虚拟路由器的 LSP#0, 包含 DBOL 标志。
- 5) 从测试端口1向目标子网发送流量。

预期结果:

测试步骤 3 中测试端口 2 收到测试端口 1 所发送的流量。 测试步骤 5 中测试端口 2 无法收到测试端口 1 所发流量。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

7 IS-IS Level1 点到点链路测试

(1) L1 路由器发送 CSNP 测试

测试编号: 25

测试项目: IS-IS1_cp_send_CSNP_on_init

测试目的:验证 DUT 在点到点链路上只在链路初始化时发送一次 CSNP。

测试依据: ISO/IEC 10589 7.3.20.2.e

测试配置:测试连接4

测试过程:

- 1) 正确连接设备。
- 2) 将测试端口与被测设备建立邻接关系。
- 3) 等待足够长的时间。

预期结果:

测试端口2收到一次CSNP。

测试说明:

(2) 与 L1 路由器建立保持邻接关系测试

测试编号: 26

测试项目: IS-IS1_cp_ L1DUT_w_noUsage_gets_L1_go__UPL1

测试目的:验证 DUT 和另一个 L1 路由器能建立并保持邻接关系。

测试依据: ISO/IEC 10589 6

测试配置:测试连接4

测试过程:

- 1) 正确连接设备。
- 2) 将测试端口与被测设备建立邻接关系。
- 3) 等待足够长的时间。

预期结果:

测试端口与 DUT 到达 UP_NRML 状态。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(3) L1 路由器拒绝 L2 IIH 测试

测试编号:27

测试项目: IS-IS1_cp_ L1DUT_w_noUsage_gets_L2_reject

测试目的:验证 L1 路由器拒绝 L2 链路类型的 IIH。

测试依据: ISO/IEC 10589 6

测试配置:测试连接4

测试过程:

- 1) 正确连接设备、设置 DUT 为 L1 路由器。
- 2) 接口 2 发送 L2 IIH。
- 3) 等待足够长的时间。

预期结果:

测试端口1与DUT建立邻接关系。

测试端口2没有与DUT建立邻接关系。

测试说明:

(4) L1 路由器与 L12 路由器邻接测试

测试编号: 28

测试项目: IS-IS1_cp_ L1DUT_w_noUsage_gets_L12_UPL1

测试目的: 验证 L1 路由器与 L12 路由器建立并保持邻接关系。

测试依据: ISO/IEC 10589 6

测试配置:测试连接4

测试过程:

- 1) 正确连接设备。
- 2) 接口 2 设置为 level 1/2 路由器。
- 3) 等待足够长的时间。

预期结果:

测试端口2与DUT建立邻接关系。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(5) L1 路由器洪泛 LSP 测试

测试编号: 29

测试项目: IS-IS1_c_fload_new_LSP

测试目的:验证 L1 路由器能够洪泛所收到新的 LSP。

测试依据: ISO/IEC 10589 7.3.17.4

测试配置:测试连接4

测试过程:

- 1) 正确连接设备。
- 2) 接口1、2和被测设备建立邻接关系。
- 3) 从接口1向 DUT 发送有效的 LSP。

预期结果:

测试端口2收到洪泛的 LSP。

测试说明:

(6) L1 路由器能够请求较新的 LSP 测试

测试编号: 30

测试项目: IS-IS1_c_request_replacement_LSP

测试目的: 验证 L1 路由器能够请求较新的 LSP。

测试依据: ISO/IEC 10589 7.3.20.1.2

测试配置:测试连接4

测试过程:

- 1) 正确连接设备。
- 2) 建立接口 2 与 DUT 邻接关系。
- 3) 在接口 2 插入序号为 10 和 100 的 LSP。
- 4) 将接口1与 DUT 建立邻接关系。

预期结果:

测试端口2收到PSNP。

DUT 将较新的 LSP 洪泛到接口 1。

测试说明:

判定原则:测试结果符合预期结果则通过,否则不通过。

(7) L1 路由器能够请求丢失的 LSP 测试

测试编号:31

测试项目: IS-IS1_c_request_missing_LSP

测试目的:验证 L1 路由器能够请求丢失的 LSP。

测试依据: ISO/IEC 10589 7.3.20.1.2

测试配置:测试连接4

测试过程:

- 1) 正确连接设备。
- 2) 建立接口 2 与 DUT 邻接关系。
- 3) 再接口 2 插入序号为 10 和 100 的 LSP。
- 4) 将接口1与 DUT 建立邻接关系。

预期结果:

测试端口2收到PSNP。

DUT 将较新的 LSP 洪泛到接口 1。

测试说明:

(8) L1 路由器洪泛邻接路由器缺少的 LSP 测试

测试编号: 32

测试项目: IS-IS1_c_request_replacement_LSP

测试目的: 验证 L1 路由器能够将相临路由器缺少的 LSP 洪泛出去。

测试依据: ISO/IEC 10589 7.3.20.1.2

测试配置:测试连接4

测试过程:

- 1) 正确连接设备。
- 2) 将接口1与 DUT 建立邻接关系。
- 3) 在接口1数据库中插入2个LSP。
- 4) 在接口2数据库中插入带 NO_SET_SRM_FLAG 选项的 LSP。
- 5) 等待接口 1 与 DUT 建立邻接关系。

预期结果:

测试端口2收到缺少的 LSP。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(9) L1 路由器忽略相同的 LSP 测试

测试编号: 33

测试项目: IS-IS1_c_request_replacement_LSP

测试目的:验证 L1 路由器能够忽略相同的 LSP。

测试依据: ISO/IEC 10589 7.3.20.1.2

测试配置:测试连接4

测试过程:

- 1) 正确连接设备。
- 2) 建立接口1与 DUT 邻接关系。
- 3) 在接口 2 插入相同的 LSP。
- 4) 将接口 2 与 DUT 建立邻接关系。

预期结果:

DUT 没有向接口 2 请求 LSP。

测试说明:

(10) L1 路由器忽略旧 LSP 测试

测试编号: 34

测试项目: IS-IS1_c_ignore_older_LSP

测试目的:验证 L1 路由器能够忽略较老的 LSP,并且传输自身较新的 LSP。

测试依据: ISO/IEC 10589 7.3.20.1.2

测试配置:测试连接4

测试过程:

- 1) 正确连接设备。
- 2) 建立接口1与 DUT 邻接关系。
- 3) 在接口 1 插入较新的 LSP 并且洪泛到 DUT。
- 4) 将接口 2 与 DUT 建立邻接关系。
- 5) 在接口 2 中插入相同的 LSP, 使用较小的序列号。

预期结果:

DUT 没有向接口 2 发送 PSNP 请求较老的 LSP。

接口2中较老的LSP被更新。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(11) L1 路由器 CSNP 产生测试

测试编号: 35

测试项目: IS-IS1_c_CSNP_Generation

测试目的:验证 L1 路由器能够产生有效的 CSNP 来描述所有的 LSP。

测试依据: ISO/IEC 10589 7.3.20

测试配置:测试连接4

测试过程:

- 1) 正确连接设备。
- 2) 建立接口1与 DUT 邻接关系。
- 3) 在接口 1 插入新的 LSP。
- 4) 将接口 2 与 DUT 建立邻接关系。

预期结果:

接口1数据库中所有的 LSP 出现在接口2数据库中。

接口2收到超过0个CSNP。

测试说明:

(12) L1 路由器多 CSNP 产生测试

测试编号: 36

测试项目: IS-IS1_c_multiple_CSNP_Generation

测试目的:验证 L1 路由器能够产生多个 CSNP 来装载较大的数据库。

测试依据: ISO/IEC 10589 7.3.20

测试配置: 测试连接 4

测试过程:

- 1) 正确连接设备。
- 2) 建立接口1与 DUT 邻接关系。
- 3) 在接口 2 插入大量的 LSP (无法装载在一个 CSNP 中)。
- 4) 将接口2与 DUT 建立邻接关系。

预期结果:

接口1收到多个CSNP。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(13) L1 路由器多 PSNP 产生测试

测试编号:37

测试项目: IS-IS1_c_ send_PSNP_multiple

测试目的:验证 L1 路由器能够产生多个 PSNP 来请求所需要的 LSP。

测试依据: ISO/IEC 10589 7.3.20.3

测试配置: 测试连接 4

测试过程:

- 1) 正确连接设备。
- 2) 在接口 2 的数据库中插入带 NO_SET_SRM_FLAG 标志的 LSP。
- 3) 将接口 2 与 DUT 建立邻接关系。
- 4) 将接口1与 DUT 建立邻接关系。

预期结果:

接口 2 收到多个 PSNP 请求所插入的 LSP。

插入接口2的 LSP 出现在接口1的数据库中。

测试说明:

(14) L1 路由器收到新 ZRLT LSP 测试

测试编号:38

测试项目: IS-IS1_c_ receice_newer_ZRLT_LSP

测试目的:验证 L1 路由器收到较新的 ZRLT LSP 后能更新数据库, 洪泛 LSP。

测试依据: ISO/IEC 10589 7.3.21.3.b

测试配置:测试连接4

测试过程:

- 1) 正确连接设备。
- 2) 将接口 1、2 与 DUT 建立邻接关系。
- 3) 在接口 2 数据库中插入有效的 LSP, 洪泛到 DUT。
- 4) 在接口 2 数据库中插入较新版本的同一 LSP, 剩余生存时间为 0。
- 5) 关闭接口1。
- 6) 将同一LSP 插入数据库 (剩余生存时间非 0)。
- 7) 接口1与DUT 建立邻接关系。

预期结果:

步骤3后接口1收到LSP。

步骤 4 后接口 1 收到 ZRLT LSP。

步骤 7 后验证接口 1 数据库中存在 ZRLT LSP。

测试说明:

判定原则。测试结果符合预期结果则通过、否则不通过。

(15) L1 路由器收到相同 ZRLT LSP 测试

测试编号: 39

测试项目: IS-IS1_c_ receice_same_ZRLT_LSP

测试目的:验证 L1 路由器收到相同的 ZRLT LSP 后能正确处理。

测试依据: ISO/IEC 10589 7.3.21.3.2

测试配置:测试连接4

测试过程:

- 1) 正确连接设备。
- 2) 将接口1、2与 DUT 建立邻接关系。
- 3) 在接口 2 数据库中插入有效的 LSP, 洪泛到 DUT。
- 4) 在接口2数据库中插人同一 LSP, 剩余生存时间为0。
- 5) 从接口1删除该LSP。
- 6) 在接口2数据库中插入同一LSP, 剩余生存时间为0。

(续表)

预期结果:

步骤3后接口1收到LSP。

步骤 4 后接口 1 收到 ZRLT LSP。

步骤 6 后验证接口 1 数据库中不存在 ZRLT LSP。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(16) L1 路由器收到旧 ZRLT LSP 测试

测试编号: 40

测试项目: IS-IS1_c_receice_older_ZRLP_LSP

测试目的: 验证 L1 路由器收到较旧的 ZRLT LSP 后能正确处理。

测试依据: ISO/IEC 10589 7.3.21.3.b.3

测试配置: 测试连接 4

测试过程:

- 1) 正确连接设备。
- 2) 将接口1、2与 DUT 建立邻接关系。
- 3) 在接口 2 数据库中插入有效的 LSP, 洪泛到 DUT。
- 4) 等待剩余生存时间为 0。
- 5) 将接口2数据库中插入同一 LSP, 剩余生存时间为0, 但是序列号较小。

预期结果:

步骤 5 后验证接口 2 数据库中存在较新的 ZRLT LSP。

测试说明:

(17) L1 路由器收到自己产生但不存在 ZRLT LSP 测试

测试编号:41

测试项目: IS-IS1 c receice own missing ZRLP LSP

测试目的:验证 L1 路由器收到自己产生但不存在的 ZRLT LSP 后能正确处理。

测试依据: ISO/IEC 10589 7.3.17.3.1

测试配置:测试连接4

测试过程:

- 1) 正确连接设备。
- 2) 将接口1、2与 DUT 建立邻接关系。
- 3) 在接口 1 数据库中插入 ZRLT LSP, 带有 Never_FloodOption 标志, DUT 作为源 ID。
- 4) 在接口2数据库插入带 SET SRM FLAG的 LSP。

预期结果:

步骤 4 后验证接口 1 收到 ZRLT LSP。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(18) L1 路由器收到缺少的 LSP 测试

测试编号: 42

测试项目: IS-IS1_c_receice_missing_LSP

测试目的:验证 L1 路由器收到不存在的 LSP 后能正确处理。

测试依据: ISO/IEC 10589 7.3.17.1

测试配置:测试连接4

测试过程:

- 1) 正确连接设备。
- 2) 将接口1、2与 DUT 建立邻接关系。
- 3) 在接口 2 数据库中插入有效的 LSP。

预期结果:

步骤 3 后验证接口 1 收到 LSP。

测试说明:

(19) L1 路由器收到新的 LSP 测试

测试编号: 43

测试项目: IS-IS1_c_receice_newer_LSP

测试目的:验证 L1 路由器收到新的 LSP 后能正确处理。

测试依据: ISO/IEC 10589 7.3.17.4

测试配置:测试连接4

测试过程:

- 1) 正确连接设备。
- 2) 将接口1、2与 DUT 建立邻接关系。
- 3) 在接口 2 数据库中插入有效的 LSP。
- 4) 在接口2数据库中插入同一LSP, 但版本更新。

预期结果:

步骤3后验证接口1收到LSP。

步骤 4 后接口 1 收到最新版本的 LSP。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(20) L1 路由器收到相同的 LSP 测试

测试编号: 44

测试项目: IS-IS1_c_receice_same_LSP

测试目的:验证 L1 路由器收到相同的 LSP 后能正确处理。

测试依据: ISO/IEC 10589 7.3.17.4.b

测试配置:测试连接4

测试过程:

- 1) 正确连接设备。
- 2) 将接口1、2与 DUT 建立邻接关系。
- 3) 在接口 2 数据库中插入有效的 LSP。
- 4) 在接口2数据库中插入同一LSP。

预期结果:

步骤 3 后验证接口 1 收到 LSP。

步骤 4 后接口 1 没有收到 LSP。

测试说明:

(21) L1 路由器收到旧的 LSP 测试

测试编号: 45

测试项目: IS-IS1 c receice older LSP

测试目的:验证 L1 路由器收到旧版本的 LSP 后能正确处理。

测试依据: ISO/IEC 10589 7.3.17.4

测试配置: 测试连接 4

测试过程:

- 1) 正确连接设备。
- 2) 将接口 1、2 与 DUT 建立邻接关系。
- 3) 在接口 2 数据库中插入有效的 LSP。
- 4) 在接口2数据库中插入同一 LSP, 版本较旧。

预期结果:

步骤 3 后验证接口 1 收到 LSP。

步骤 4 后接口 1 数据库中 LSP 版本较新。

测试说明:

判定原则:测试结果符合预期结果则通过,否则不通过。

(22) L1 路由器忽略 CSNP 中 ZRLT 的 LSP 测试

测试编号: 46

测试项目: IS-IS1_c_ignore_CSNP_ZRLT_request

测试目的:验证 L1 路由器忽略 CSNP 中 ZRLT 的 LSP。

测试依据: ISO/IEC 10589 7.3.20.1.2

测试配置:测试连接4

测试过程:

- 1) 正确连接设备。
- 2) 在接口 2 的数据库中插入 ZRLT 的 LSP 和有效的 LSP, 置 NO_SET_SRM_FLAG。
- 3) 将接口1、2 与 DUT 建立邻接关系。

预期结果:

步骤 3 后验证接口 1 收到有效的 LSP, 并且数据库中没有 ZRLT LSP。

测试说明:

(23) L1 路由器忽略序列号为零的 CSNP 请求

测试编号: 47

测试项目: IS-IS1_c_ignore_CSNP_zero_seqNo_request

测试目的:验证 L1 路由器忽略序列号为零的 CSNP 请求。

测试依据: ISO/IEC 10589 7.3.20.1.2

测试配置:测试连接4

测试过程:

- 1) 正确连接设备。
- 2) 在接口 2 的数据库中插入序号为 0 的 LSP 和有效的 LSP, 置 NO_SET_SRM_FLAG。
- 3) 将接口1、2与 DUT 建立邻接关系。

预期结果:

步骤 3 后验证接口 1 收到有效的 LSP, 并且数据库中没有 0 序号的 LSP。

测试说明:

判定原则:测试结果符合预期结果则通过,否则不通过。

8 IS-IS Level 2 点到点链路测试

(1) L2 路由器发送 CSNP 测试

测试编号: 48

测试项目: IS-IS2_cp_send_CSNP_on_init

测试目的:验证 DUT 在点到点链路上只在链路初始化时发送一次 CSNP。

测试依据: ISO/IEC 10589 7.3.20.2.e

测试配置:测试连接4

测试过程:

- 1) 正确连接设备。
- 2) 将测试端口与被测设备建立邻接关系。
- 3) 等待足够长的时间。

预期结果:

测试端口2收到一次CSNP。

测试说明:

(2) L2 路由器与其他 L2 路由器邻接关系建立测试

测试编号: 49

测试项目: IS-IS2_cp_ L2DUT_w_noUsage_gets_L2_go__UPL2O

测试目的:验证 DUT 和另一个 L2 路由器能建立并保持邻接关系。

测试依据: ISO/IEC 10589 6

测试配置: 测试连接 4

测试过程:

- 1) 正确连接设备。
- 2) 将测试端口与被测设备建立邻接关系。
- 3) 等待足够长的时间。

预期结果:

测试端口与 DUT 到达 UP_NRML 状态。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(3) L2 路由器洪泛所收到新的 LSP 测试

测试编号: 50

测试项目: IS-IS2_c_fload_new_LSP

测试目的: 验证 L2 路由器能够洪泛所收到新的 LSP。

测试依据: ISO/IEC 10589 7.3.17.4

测试配置:测试连接4

测试过程:

- 1) 正确连接设备。
- 2)接口1、2和被测设备建立邻接关系。
- 3) 在接口2数据库插入有效的 LSP。

预期结果:

测试端口 1 的 LSP 的 d_IS-IS_LSP_RCEIVE_COUNT 为 1。

测试端口 2 的 LSP 的 d_IS-IS_LSP_RCEIVE_COUNT 为 0。

测试说明:

(4) L2 路由器请求新 LSP 测试

测试编号:51

测试项目: IS-IS2_c_request_replacement_LSP

测试目的:验证 L2 路由器能够请求较新的 LSP。

测试依据: ISO/IEC 10589 7.3.20.1.2

测试配置:测试连接4

测试过程:

- 1) 正确连接设备。
- 2) 在接口2插入序号为100的LSP、设置NO SET SRM FLAG。接口1插入序号为10的LSP。
- 3) 将接口1与 DUT 建立邻接关系。
- 4) 将接口2与 DUT 建立邻接关系。

预期结果:

测试端口2收到PSNP。

DUT 将较新的 LSP 洪泛到接口 1。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(5) L2 路由器请求丢失 LSP 测试

测试编号:52

测试项目: IS-IS2_c_request_missing LSP

测试目的:验证 L2 路由器能够请求丢失的 LSP。

测试依据: ISO/IEC 10589 7.3.20.1.2

测试配置:测试连接4

测试过程:

- 1) 正确连接设备。
- 2) 在接口 2 插入 LSP, 设置 NO_SET_SRM_FLAG。
- 3) 将接口 1、2 与 DUT 建立邻接关系。

预期结果:

测试端口 2 收到 PSNP。

DUT 将丢失的 LSP 洪泛到接口 1。

测试说明:

(6) L2 路由器向邻居洪泛丢失的 LSP 测试

测试编号:53

测试项目: IS-IS2_c_supply_missing_LSP

测试目的: 验证 L2 路由器能够向邻居洪泛丢失的 LSP。

测试依据: ISO/IEC 10589 7.3.20.1.2

测试配置:测试连接4

测试过程:

- 1) 正确连接设备。
- 2) 将接口1与 DUT 建立邻接关系。
- 3) 向接口1插人初始的LSP。
- 4) 在接口2数据库中插入上述LSP中1个,设置NO_SET_SRM_FLAG。
- 5) 将接口 2 与 DUT 建立邻接关系。

预期结果:

测试端口 2 收到丢失的 LSP。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(7) L2 路由器忽略相同的 LSP 测试

测试编号: 54

测试项目: IS-IS2_c_ignore_same_LSP

测试目的: 验证 L2 路由器能够忽略相同的 LSP。

测试依据: ISO/IEC 10589 7.3.20

测试配置:测试连接4

测试过程:

- 1) 正确连接设备。
- 2) 将接口1与 DUT 建立邻接关系。
- 3) 在接口1数据库中插入有效的 LSP。
- 4) 在接口2数据库中插入相同的 LSP。
- 5) 将接口 2 与 DUT 建立邻接关系。

预期结果:

DUT 没有发 PSNP 请求 LSP。

测试说明:

(8) L2 路由器能够忽略旧的 LSP 测试

测试编号: 55

测试项目: IS-IS2 c ignore older LSP

测试目的,验证 L2 路由器能够忽略较旧的 LSP。

测试依据: ISO/IEC 10589 7.3.20.1.2

测试配置:测试连接4

测试过程:

- 1) 正确连接设备。
- 2) 将接口1与 DUT 建立邻接关系。
- 3) 在接口1数据库中插入序列号较高的 LSP。
- 4) 在接口 2 数据库插入相同的 LSP, 但是序列号较低。
- 5) 将接口 2 与 DUT 建立邻接关系。

预期结果:

DUT 没有向接口 2 发送 PSNP 请求较老的 LSP。

接口2中较旧的 LSP 被替代。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(9) L2 路由器产生 CSNP 测试

测试编号: 56

测试项目: IS-IS2_c_CSNP_generation

测试目的:验证 L2 路由器能够产生有效的 CSNP 描述数据库。

测试依据: ISO/IEC 10589 7.3.20

测试配置:测试连接4

测试过程:

- 1) 正确连接设备。
- 2) 将接口1与 DUT 建立邻接关系。
- 3) 在接口 1 数据库中插入有效的 LSP。
- 4) 将接口 2 与 DUT 建立邻接关系。

预期结果:

测试端口2收到有效的 CSNP, 并且数据库中包含所有插入接口1数据库的 LSP。

测试说明:

(10) L2 路由器产生多个 CSNP 测试

测试编号: 57

测试项目: IS-IS2_c_multiple_CSNP_generation

测试目的: 验证 L2 路由器能够产生多个有效的 CSNP 描述较大的数据库。

测试依据: ISO/IEC 10589 7.3.20

测试配置:测试连接4

测试过程:

- 1) 正确连接设备。
- 2) 将接口1与 DUT 建立邻接关系。
- 3) 在接口 1 数据库中插入大量有效的 LSP。
- 4) 将接口 2 与 DUT 建立邻接关系。

预期结果:

测试端口2收到多个有效的CSNP,并且数据库中包含所有插入接口1数据库的LSP。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(11) L2 路由器发送多个 PSNP 测试

测试编号: 58

测试项目: IS-IS2_c_send_PSNP_multiple

测试目的:验证 L2 路由器能够产生多个有效的 PSNP 描述较大的数据库。

测试依据: ISO/IEC 10589 7.3.20.3

测试配置: 测试连接 4

测试过程:

- 1) 正确连接设备。
- 2) 将接口 2 数据库中插入一些新的带 NO_SET_SRM 的 LSP。
- 3) 将接口 2 与 DUT 建立邻接关系。
- 4) 将接口1与 DUT 建立邻接关系。

预期结果:

测试端口 2 收到多个有效的 PSNP,并且接口 1 数据库中包含所有插入接口 2 数据库的 LSP。

测试说明:

(12) L2 路由器处理带 ZRLT 标志的新的 LSP 测试

测试编号: 59

测试项目: IS-IS2 c receive newer ZRLT LSP

测试目的:验证 L2 路由器能够正确处理带 ZRLT 标志的较新的 LSP。

测试依据: ISO/IEC 10589 7.3.21.3.b

测试配置: 测试连接 4

测试过程:

- 1) 正确连接设备。
- 2) 将接口1、2与 DUT 建立邻接关系。
- 3) 将接口 2 数据库中插入有效的 LSP。
- 4) 将接口2数据库中插人携带 ZRLT 标志的更新版本的 LSP。
- 5) 关闭接口 1 并且删除 ZRLT LSP。
- 6) 在接口1中插入有效的相同的 LSP。
- 7) 将接口1与 DUT 建立邻接关系。

预期结果:

步骤 3 后测试端口 1 中存在接口 2 数据库的 LSP。

步骤 5 后携带 ZRLT 标志的 LSP 被洪泛到接口 1 数据库中。

步骤7后验证接口1收到ZRLT LSP。

测试说明:

(13) L2 路由器处理重复的 ZRLT 标志的 LSP 测试

测试编号: 60

测试项目: IS-IS2_c_receive_same_ZRLT_LSP

测试目的:验证 L2 路由器能够正确处理重复的带 ZRLT 标志的的 LSP。

测试依据: ISO/IEC 10589 7.3.21.3.2

测试配置:测试连接4

测试过程:

- 1) 正确连接设备。
- 2) 将接口1、2与 DUT 建立邻接关系。
- 3) 在接口 2 数据库中插入有效的 LSP。
- 4) 将接口2数据库中插入携带 ZRLT 标志的 LSP。
- 5) 删除接口1数据库中ZRLT LSP。
- 6) 在接口2中重新插入相同的 LSP。

预期结果:

步骤 3 后测试端口 1 中存在接口 2 数据库的 LSP。

步骤 4 后携带 ZRLT 标志的 LSP 被洪泛到接口 1 数据库中。

步骤7后验证接口1没有收到ZRLT LSP。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(14) L2 路由器收到旧的 ZRLT LSP 测试

测试编号: 61

测试项目: IS-IS2_c_receive_older_ZRLT_LSP

测试目的:验证 L2 路由器能够正确处理较旧的带 ZRLT 标志的 LSP。

测试依据: ISO/IEC 10589 7.3.21.3.b.3

测试配置: 测试连接 4

测试过程:

- 1) 正确连接设备。
- 2) 将接口 1、2 与 DUT 建立邻接关系。
- 3) 在接口 2 数据库中插入有效的 LSP 并等待足够长的时间。
- 4) 在接口2数据库中插入较旧的携带 ZRLT 标志的 LSP。

预期结果:

步骤 3 后测试端口 1 中存在接口 2 数据库的 LSP。

步骤 4 后较新的携带 ZRLT 标志的 LSP 被洪泛到接口 1 数据库中。

测试说明:

(15) I.2 路由器处理自身产生、丢失的 ZRLT 标志的 LSP 测试

测试编号: 62

测试项目: IS-IS2_c_receive_own_missing_ZRLT_LSP

测试目的:验证 L2 路由器能够正确处理自身产生、丢失的带 ZRLT 标志的 LSP。

测试依据: ISO/IEC 10589 7.3.17.3.1

测试配置:测试连接4

测试过程:

- 1) 正确连接设备。
- 2) 将接口1、2与 DUT 建立邻接关系。
- 3) 在接口 1 数据库中插入带 ZRLT 标记的 LSP, DUT 作为源 ID, 带 NEVER_FLOOD 选项。
- 4) 在接口2数据库中插入相同的 ISP, 带 SET_SRM_FLAG。

预期结果:

步骤 4 后测试端口 1 多次收到 LSP。

测试说明:

判定原则:测试结果符合预期结果则通过,否则不通过。

(16) L2 路由器收到缺少的 LSP 测试

测试编号: 63

测试项目: IS-IS2_c_receive_missing_LSP

测试目的:验证 L2 路由器能够正确处理丢失的 LSP。

测试依据: ISO/IEC 10589 7.3.17.1

测试配置:测试连接4

测试过程:

- 1) 正确连接设备。
- 2) 将接口1、2与 DUT 建立邻接关系。
- 3) 在接口 2 数据库中插入有效的 LSP。

预期结果:

验证该 LSP 洪泛到测试端口 1 中。

测试说明:

(17) L2 路由器收到新的 LSP 测试

测试编号: 64

测试项目: IS-IS2_c_receive_newer_LSP

测试目的: 验证 L2 路由器能够正确处理较新的 LSP。

测试依据: ISO/IEC 10589 7.3.17.4

测试配置:测试连接4

测试过程:

- 1) 正确连接设备。
- 2) 将接口1、2与 DUT 建立邻接关系。
- 3) 在接口 2 数据库中插入有效的 LSP。
- 4) 在接口2数据库中插入较新版本相同的 LSP。

预期结果:

步骤 3 后验证该 LSP 出现在测试端口 1 数据库中。 步骤 4 后验证较新的 LSP 出现在测试端口 1 数据库中。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(18) L2 路由器收到相同的 LSP 测试

测试编号: 65

测试项目: IS-IS2_c_receive_same_LSP

测试目的: 验证 L2 路由器能够正确处理重复的 LSP。

测试依据: ISO/IEC 10589 7.3.17.4.b

测试配置:测试连接4

测试过程:

- 1) 正确连接设备。
- 2) 将接口1、2与 DUT 建立邻接关系。
- 3) 在接口2数据库中插入有效的 LSP。
- 4) 在接口2数据库中插入相同的LSP, 使用SET_SRM_FLAG。

预期结果:

步骤 3 后验证该 LSP 出现在测试端口 1 数据库中。

步骤 4 后验证接口只收到一次 LSP。

测试说明:

(19) L2 路由器收到旧的 LSP 测试

测试编号: 66

测试项目: IS-IS2_c_receive_older_LSP

测试目的: 验证 L2 路由器能够正确处理较旧的 LSP。

测试依据: ISO/IEC 10589 7.3.17.4

测试配置:测试连接4

测试过程:

- 1) 正确连接设备。
- 2) 将接口1、2与 DUT 建立邻接关系。
- 3) 在接口2数据库中插入有效的 LSP。
- 4) 在接口2数据库中插入相同的 LSP, 序列号较小。

预期结果:

步骤 3 后验证该 LSP 出现在测试端口 1 数据库中。

步骤 4 后验证接口 1、2 中的 LSP 都是最新版本。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(20) L2 路由器忽略 CSNP_ZRLT 请求测试

测试编号: 67

测试项目: IS-IS2_c_ignore_CSNP_ZRLT_request

测试目的:验证 L2 路由器能够忽略 CSNP 中剩余时间为 0 的 LSP。

测试依据: ISO/IEC 10589 7.3.20.1.2

测试配置:测试连接4

测试过程:

- 1) 正确连接设备。
- 2) 在接口2数据库中插入剩余时间为0的LSP。
- 3) 将接口1、2 与 DUT 建立邻接关系。

预期结果:

验证在接口1数据库中没有出现剩余时间为0的LSP、其余LSP出现在数据库中。

测试说明:

(21) L2 路由器能够忽略序号为 0 的 CSNP 中 LSP 请求测试

测试编号: 68

测试项目: IS-IS2_c_ignore_zero_seqNo_request

测试目的: 验证 L2 路由器能够忽略序号为 0 的 CSNP 中 LSP 请求。

测试依据: ISO/IEC 10589 7.3.20.1.2

测试配置:测试连接4

测试过程:

- 1) 正确连接设备。
- 2) 在接口 2 数据库中插入序号为 0 的 LSP 和有效的 LSP。
- 3) 将接口1、2与 DUT 建立邻接关系。

预期结果:

验证在接口1数据库中没有出现序号为0的LSP, 其余LSP出现在数据库中。

测试说明:

判定原则:测试结果符合预期结果则通过,否则不通过。

9 IS-IS Level1/2 点到点测试

(1) L2 路由器发送 CSNP 测试

测试编号: 69

测试项目: IS-IS12_cp_send_CSNP_on_init_mixed

测试目的:验证 L12 路由器线路初始化时只产生一个 CSNP。

测试依据: ISO/IEC 10589 7.3.20.2.e

测试配置:测试连接4

测试过程:

- 1) 正确连接设备。
- 2) 将接口1与DUT建立邻接关系。

预期结果:

验证在接口1只收到一个 Level 1CSNP 和一个 Level 2 CSNP。

测试说明:

(2) L12 路由器邻接关系建立测试

测试编号,70

测试项目: IS-IS12_cp_ L12DUT_w_noUsage_getsL12_go_UPL12

测试目的:验证 L12 路由器能够与配置成 L12 的测试端口建立邻接关系。

测试依据: ISO/IEC 10589 6

测试配置:测试连接4

测试过程:

- 1) 正确连接设备。
- 2) 等待接口 2 与 DUT 建立邻接关系。
- 3) 等待接口 1 与 DUT 建立邻接关系。

预期结果:

验证在接口1正确建立邻接关系。

验证在接口2正确建立邻接关系。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(3) L12 路由器与变成 L2 路由器邻接测试

测试编号: 71

测试项目: IS-IS12_cp_ L12DUT_w_ L1Usage_gets_L2_go_L2

测试目的:验证 L12 路由器能与由 L1 变成 L2 的测试端口建立邻接关系。

测试依据: ISO/IEC 10589 7

测试配置:测试连接4

测试过程:

- 1) 正确连接设备。
- 2) 等待接口 2 与 DUT 建立 L1 邻接关系。
- 3) 等待接口1与 DUT 建立 L1、L2 邻接关系。
- 4) 将接口2电路改成L2。

预期结果:

步骤2后验证在接口2得到关于接口2的L1 LSP。

步骤3后验证在接口1得到关于接口2的L1LSP、没有得到关于接口2的L2LSP。

步骤 4 后验证在接口 1 得到关于接口 2 的 L2 LSP,没有得到关于接口 2 的 L1 LSP。

测试说明:

(4) L12 路由器与变成 L12 路由器邻接测试

测试编号: 72

测试项目: IS-IS12_cp_ L12DUT_w_ L1Usage_gets_L2_go_L12

测试目的:验证 L12 路由器能与由 L1 变成 L12 的测试端口建立邻接关系。

测试依据: ISO/IEC 10589 7

测试配置:测试连接4

测试过程:

- 1) 正确连接设备。
- 2) 等待接口 2 与 DUT 建立 L1 邻接关系。
- 3) 等待接口1与 DUT 建立 L1、L2 邻接关系。
- 4) 将接口 2 电路改成 L12。

预期结果:

步骤2后验证在接口2得到关于接口2的L1 LSP。

步骤 3 后验证在接口 1 得到关于接口 2 的 L1 LSP, 没有得到关于接口 2 的 L2 LSP。

步骤 4 后验证在接口 1 得到关于接口 2 的 L2 LSP, 得到关于接口 2 的 L1 LSP。

测试说明:

判定原则:测试结果符合预期结果则通过,否则不通过。

(5) L12 路由器与变成 L1 路由器邻接测试

测试编号: 73

测试项目: IS-IS12_cp_ L12DUT_w_ L12Usage_gets_L1_go_L1

测试目的:验证 L12 路由器能与由 L12 变成 L1 的测试端口建立邻接关系。

测试依据: ISO/IEC 10589 7

测试配置:测试连接4

测试过程:

- 1) 正确连接设备。
- 2) 等待接口 2 与 DUT 建立 L12 邻接关系。
- 3) 等待接口 1 与 DUT 建立 L1、L2 邻接关系。
- 4) 将接口2电路改成 L1。

预期结果:

步骤2后验证在接口2得到关于接口2的L1、L2 LSP。

步骤 3 后验证在接口 1 得到关于接口 2 的 L1 LSP, 得到关于接口 2 的 L2 LSP。

步骤 4 后验证在接口 1 得到关于接口 2 的 L1 LSP,没有得到关于接口 2 的 L2 LSP。

测试说明:

(6) L12 路由器与变成 L2 路由器邻接测试

测试编号: 74

测试项目: IS-IS12_cp_ L12DUT_w_ L12Usage_gets_L2_go_L2

测试目的:验证 L12 路由器能与由 L12 变成 L2 的测试端口建立邻接关系。

测试依据: ISO/IEC 10589 7

测试配置:测试连接4

测试过程:

- 1) 正确连接设备。
- 2) 等待接口 2 与 DUT 建立 L12 邻接关系。
- 3) 等待接口1与DUT建立L1、L2邻接关系。
- 4) 将接口 2 链路类型改成 L2。

预期结果:

步骤 2 后验证在接口 2 得到关于接口 2 的 L1, L2 LSP。

步骤 3 后验证在接口 1 得到关于接口 2 的 L1 LSP, 得到关于接口 2 的 L2 LSP。

步骤 4 后验证在接口 1 得到关于接口 2 的 L2 LSP, 没有得到关于接口 2 的 L1 LSP。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

10 IS-IS L1 IP 认证

(1) IS-IS L1 链路 IP 认证成功测试

测试编号: 75

测试项目: IS-IS1_c_link_Ipauthentication_is_OK

测试目的:验证 DUThello 中认证功能 (链路)。

测试依据: RFC1195 5.2

测试配置:测试连接3

测试过程.

- 1) 正确连接设备,配置端口1、2正确口令,端口3不配口令。
- 2) 等待接口 1、2 与 DUT 建立邻接关系。
- 3) 等待接口2数据库中插入LSP。
- 4) 关闭接口 2。
- 5) 等待接口 3 与 DUT 建立邻接关系。
- 6) 在接口 3 中插入 LSP。

预期结果:

步骤 3 后验证 LSP 在接口 1 数据库中。

步骤 6 后验证 LSP 不在接口 1 数据库中。

测试说明:

(2) IS-IS L1 链路 IP 认证失败测试 1

测试编号: 76

测试项目: IS-IS1_c_link_Ipauthentication_is_BAD1

测试目的:验证 DUThello 中认证功能 (链路口令错误)。

测试依据: RFC1195 5.2

测试配置:测试连接3

测试过程:

- 1) 正确连接设备,配置接口3错误的口令。
- 2) 等待接口1、2与 DUT 建立邻接关系。
- 3) 等待接口2数据库中插入LSP。
- 4) 关闭接口 2。
- 5) 等待接口3建立邻接关系。
- 6) 在接口3中插入LSP。

预期结果:

步骤 3 后验证 LSP 在接口 1 数据库中。

步骤 6 后验证 LSP 不在接口 1 数据库中。

测试说明:

判定原则:测试结果符合预期结果则通过,否则不通过。

(3) IS-IS L1 链路 IP 认证失败测试 2

测试编号: 77

测试项目: IS-IS1_c_link_Ipauthentication_is_BAD2

测试目的:验证 DUThello 中认证功能(认证类型错误)。

测试依据: RFC1195 5.2

测试配置:测试连接3

测试过程:

- 1) 正确连接设备, 配置接口3认证类型为0。
- 2) 等待接口 1、2 与 DUT 建立邻接关系。
- 3)接口2数据库中插入LSP。
- 4) 关闭接口 2。
- 5) 等待接口3与 DUT 建立邻接关系。
- 6) 在接口3中插入LSP。

预期结果:

步骤 3 后验证 LSP 在接口 1 数据库中。

步骤 6 后验证 LSP 不在接口 1 数据库中。

测试说明:

(4) IS-IS L1 区域 OSI 认证成功测试

测试编号: 78

测试项目: IS-IS1_c_area_OSIauthentication_is_OK

测试目的:验证 DUTIIH 中认证功能 (区域口令)。

测试依据: ISO/IEC 10589 7.3.17.1.1.h

测试配置:测试连接3

测试过程:

- 1) 正确连接设备,配置接口2正确的区域口令。
- 2) 等待接口1、2与 DUT 建立邻接关系。
- 3) 等待接口 2 数据库中插入 LSP。
- 4) 等待接口 2 数据库中插入缺少区域口令的 LSP。

预期结果:

步骤 3 后验证 LSP 在接口 1 数据库中。

步骤 4 后验证 LSP 不在接口 1 数据库中。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(5) IS-IS L1 区域 OSI 认证失败测试 1

测试编号:79

测试项目: IS-IS1_c_area_OSlauthentication_is_BAD1

测试目的:验证 DUTIIH 中认证功能 (区域口令)。

测试依据: ISO/IEC 10589 7.3.17.1.1.h

测试配置:测试连接3

测试过程:

- 1) 正确连接设备。
- 2) 等待接口 1、2 与 DUT 建立邻接关系。
- 3) 等待接口 2 数据库中插入 LSP。
- 4) 等待接口 2 数据库中插入错误区域口令的 LSP。

预期结果:

步骤 3 后验证 LSP 在接口 1 数据库中。

步骤 4 后验证 LSP 不在接口 1 数据库中。

测试说明:

(6) IS-IS L1 区域 OSI 认证失败测试 2

测试编号: 80

测试项目: IS-IS1_c_area_OSIauthentication_is_BAD2

测试目的:验证 DUT IIH 中认证功能 (区域口令)。

测试依据: ISO/IEC 10589 7.3.17.1.1.h

测试配置: 测试连接3

测试过程:

- 1) 正确连接设备。
- 2) 等待接口 1、2 与 DUT 建立邻接关系。
- 3) 等待接口2数据库中插入LSP。
- 4) 等待接口 2 数据库中插入授权类型错误的 LSP。

预期结果:

步骤 3 后验证 LSP 在接口 1 数据库中。

步骤 4 后验证 LSP 不在接口 1 数据库中。

测试说明:

判定原则:测试结果符合预期结果则通过,否则不通过。

(7) IS-IS L1 区域 CSNP IP 认证成功测试

测试编号:81

测试项目: IS-IS1_c_area_CSNP_IPauthentication_is_OK

测试目的:验证 DUTCSNP 中认证功能(区域口令)。

测试依据: RFC1195 5.2

测试配置:测试连接3

测试过程:

- 1) 正确连接设备。
- 2) 等待接口 1、2 与 DUT 建立邻接关系。
- 3)接口2数据库中插入LSP不洪泛。
- 4) 关闭接口 2, 将接口 3 与 DUT 建立邻接关系。
- 5) 接口 3 数据库中插入有效的 LSP。

预期结果:

步骤 3 后验证 LSP 在接口 1 数据库中。

步骤 4 后验证 LSP 不在接口 1 数据库中。

测试说明:

(8) IS-IS L1 区域 CSNP IP 认证失败测试 1

测试编号: 82

测试项目: IS-IS1_c_area_CSNP_IPauthentication_is_BAD1

测试目的:验证 DUTCSNP 中认证功能 (区域口令)。

测试依据: RFC1195 5.2

测试配置:测试连接3

测试过程:

- 1) 正确连接设备、接口3配置错误的 Area 口令
- 2) 等待接口 1、2 与 DUT 建立邻接关系。
- 3) 在接口2数据库中插入LSP。
- 4) 关闭接口 2、将接口 3 与 DUT 建立邻接关系。
- 5) 在接口3数据库中插入有效的 LSP。

预期结果:

步骤 3 后验证 LSP 在接口 1 数据库中。

步骤 5 后验证 LSP 不在接口 1 数据库中。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(9) IS-IS L1 区域 CSNP IP 认证失败测试 2

测试编号:83

测试项目: IS-IS1_c_area_CSNP_IPauthentication_is_BAD2

测试目的:验证 DUTCSNP 中认证功能(区域口令)。

测试依据: RFC1195 5.2

测试配置:测试连接3

测试过程:

- 1) 正确连接设备,接口3配置错误的 Area 认证类型。
- 2) 等待接口 1、2 与 DUT 建立邻接关系。
- 3) 在接口2数据库中插入LSP。
- 4) 关闭接口 2, 将接口 3 与 DUT 建立邻接关系。
- 5) 在接口3数据库中插入有效的 LSP。

预期结果:

步骤3后验证LSP在接口1数据库中。

步骤 5 后验证 LSP 不在接口 1 数据库中。

测试说明:

11 IS-IS L2 IP 认证

(1) IS-IS L2 链路 IP 认证成功

测试编号: 84

测试项目: IS-IS2_c_link_Ipauthentication_is_OK

测试目的:验证 DUT 链路中认证功能。

测试依据: RFC1195 5.2

测试配置:测试连接3

测试过程:

- 1) 正确连接设备,配置端口1、2正确口令,端口3不配口令。
- 2) 等待接口 1、2 与 DUT 建立邻接关系。
- 3) 等待接口 2 数据库中插入 LSP。
- 4) 关闭接口 2。
- 5) 等待接口 3 与 DUT 建立邻接关系。
- 6) 在接口 3 插入 LSP。

预期结果:

步骤 3 后验证 LSP 在接口 1 数据库中。

步骤 6 后验证 LSP 不在接口 1 数据库中

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(2) IS-IS L2 链路 IP 认证失败测试 1

测试编号: 85

测试项目: IS-IS2_c_link_Ipauthentication_is_BAD1

测试目的:验证 DUT 链路中认证功能 (口令错)。

测试依据: RFC1195 5.2

测试配置:测试连接3

测试过程:

- 1) 正确连接设备,配置接口3错误的口令。
- 2) 等待接口 1、2 与 DUT 建立邻接关系。
- 3) 等待接口2数据库中插入LSP。
- 4) 关闭接口 2。
- 5) 等待接口3建立邻接关系。
- 6) 在接口 3 插入 LSP。

(建表)

预期结果:

步骤 3 后验证 LSP 在接口 1 数据库中。 步骤 6 后验证 LSP 不在接口 1 数据库中。

测试说明:

判定原则:测试结果符合预期结果则通过,否则不通过。

(3) S-IS L2 链路 IP 认证失败测试 2

测试编号: 86

测试项目: IS-IS2_c_link_Ipauthentication_is_BAD2

测试目的:验证 DUT 链路中认证功能 (类型错)。

测试依据: RFC1195 5.2

测试配置:测试连接3

测试过程:

- 1) 正确连接设备, 配置接口 2 认证类型为 0。
- 2) 等待接口 1、2 与 DUT 建立邻接关系。
- 3) 在接口2数据库中插入LSP。
- 4) 关闭接口 2。
- 5) 等待接口3建立邻接关系。
- 6) 在接口 3 中插入 LSP。

预期结果:

步骤 3 后验证 LSP 在接口 1 数据库中。

步骤 6 后验证 LSP 不在接口 1 数据库中。

测试说明:

(4) IS-IS L2 路由域 OSI 认证成功测试

测试编号: 87

测试项目: IS-IS2_c_domain_OSIauthentication_is_OK

测试目的:验证 DUT IIH 中认证功能 (区域口令)。

测试依据: ISO/IEC 10589 7.3.17.1.1

测试配置: 测试连接3

测试过程:

- 1) 正确连接设备,配置接口3正确的路由域口令。
- 2) 等待接口1、2与 DUT 建立邻接关系。
- 3) 等待接口 2 数据库中插入 LSP。
- 4) 等待接口 2 数据库中插入缺少路由域口令的 LSP。

预期结果:

步骤 3 后验证 LSP 在接口 1 数据库中。

步骤 4 后验证 LSP 不在接口 1 数据库中。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(5) IS-IS L2 路由域 OSI 认证失败测试 1

测试编号:88

测试项目: IS-IS2_c_ domain _OSIauthentication_is_BAD1

测试目的: 验证 DUT IIH 中认证功能(路由域口令)。

测试依据: ISO/IEC 10589 7.3.17.1.1

测试配置: 测试连接3

测试过程:

- 1) 正确连接设备。
- 2) 等待接口 1、2 与 DUT 建立邻接关系。
- 3) 等待接口2数据库中插入LSP。
- 4) 等待接口 2 数据库中插入错误路由域口令的 LSP。

预期结果:

步骤 3 后验证 LSP 在接口 1 数据库中。

步骤 4 后验证 LSP 不在接口 1 数据库中。

测试说明:

(6) IS-IS L2 路由域 OSI 认证失败测试 2

测试编号: 89

测试项目: IS-IS2_c_ domain _OSIauthentication_is_BAD2

测试目的:验证 DUT IIH 中认证功能(路由域口令)。

测试依据: ISO/IEC 10589 7.3.17.1.1

测试配置: 测试连接3

测试过程:

- 1) 正确连接设备。
- 2) 等待接口 1、2 与 DUT 建立邻接关系。
- 3) 等待接口2数据库中插入LSP。
- 4) 等待接口2数据库中插入授权类型错误。

预期结果:

步骤 3 后验证 LSP 在接口 1 数据库中。

步骤 4 后验证 LSP 不在接口 1 数据库中。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(7) IS-IS L2 路由域 CSNP IP 认证成功测试

测试编号: 90

测试项目: IS-IS2_c_ domain _CSNP_IPauthentication_is_OK

测试目的:验证 DUT IIH 中认证功能(路由域口令)。

测试依据: RFC1195 5.2

测试配置:测试连接3

测试过程:

- 1) 正确连接设备。
- 2) 等待接口 1、2 与 DUT 建立邻接关系。
- 3) 在接口2数据库中插入LSP。
- 4) 关闭接口 2, 将接口 3 与 DUT 建立邻接关系。
- 5) 在接口 3 数据库中插入有效的 LSP。

预期结果:

步骤 3 后验证 LSP 在接口 1 数据库中。

步骤 4 后验证 LSP 不在接口 1 数据库中。

测试说明:

(8) IS-IS L2 路由域 CSNP IP 认证失败测试 1

测试编号:91

测试项目: IS-IS2_c_ domain _CSNP_IPauthentication_is_BAD1

测试目的:验证 DUT IIH 中认证功能(路由域口令)。

测试依据: RFC1195 5.2

测试配置: 测试连接3

测试过程:

- 1) 正确连接设备接口 3 配置错误的路由域口令。
- 2) 等待接口 1、2 与 DUT 建立邻接关系。
- 3) 在接口2数据库中插入LSP。
- 4) 关闭接口 2、将接口 3 与 DUT 建立邻接关系。
- 5) 在接口 3 数据库中插入有效的 LSP。

预期结果:

步骤 3 后验证 LSP 在接口 1 数据库中。

步骤 5 后验证 LSP 不在接口 1 数据库中。

测试说明:

判定原则:测试结果符合预期结果则通过,否则不通过。

(9) IS-IS L2 路由域 CSNP IP 认证失败测试 2

测试编号: 92

测试项目: IS-IS2_c_ domain _CSNP_IPauthentication_is_BAD2

测试目的:验证 DUT IIH 中认证功能 (路由域口令)。

测试依据: RFC1195 5.2

测试配置:测试连接3

测试过程:

- 1) 正确连接设备,接口3配置错误的路由域认证类型。
- 2) 等待接口 1、2 与 DUT 建立邻接关系。
- 3) 在接口2数据库中插入 LSP。
- 4) 关闭接口 2, 将接口 3 与 DUT 建立邻接关系。
- 5) 在接口 3 数据库中插入有效的 LSP。

预期结果:

步骤 3 后验证 LSP 在接口 1 数据库中。

步骤 5 后验证 LSP 不在接口 1 数据库中。

测试说明:

12 IS-IS L1 OSI 认证

(1) IS-IS L1 链路 OSI 认证成功测试

测试编号:93

测试项目: IS-IS2_c_link_OSIauthentication_is_OK

测试目的:验证 DUT 中认证功能 (线路)。

测试依据: ISO/IEC 10589 8.4.3.1.c

测试配置:测试连接3

测试讨程:

- 1) 正确连接设备,接口3配置错误的线路认证口令。
- 2) 等待接口 1、2 与 DUT 建立邻接关系。
- 3) 在接口2数据库中插入LSP。
- 4) 关闭接口 2, 等待接口 3 与 DUT 建立邻接关系。
- 5) 在接口3数据库中插入有效的 LSP。

预期结果:

步骤 3 后验证 LSP 在接口 1 数据库中。

步骤 5 后验证 LSP 不在接口 1 数据库中。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(2) IS-IS L1 链路 OSI 认证失败测试 1

测试编号: 94

测试项目: IS-IS2 c link OSIauthentication_is_BAD1

测试目的:验证 DUT 中认证功能 (线路)。

测试依据: ISO/IEC 10589 8.4.3.1.c

测试配置:测试连接3

测试过程:

- 1) 正确连接设备,接口3配置错误的线路认证口令。
- 2) 等待接口 1、2 与 DUT 建立邻接关系。
- 3) 在接口2数据库中插入LSP。
- 4) 关闭接口 2, 将接口 3 与 DUT 建立邻接关系。
- 5) 在接口 3 数据库中插入有效的 LSP。

预期结果:

步骤 3 后验证 LSP 在接口 1 数据库中。

步骤 5 后验证 LSP 不在接口 1 数据库中。

测试说明:

(3) IS-IS L1 链路 OSI 失败测试 2

测试编号: 95

测试项目: IS-IS2_c_link_OSIauthentication_is_BAD2

测试目的:验证 DUT 中认证功能 (线路)。

测试依据: ISO/IEC 10589 8.4.3.1.c

测试配置:测试连接3

测试过程:

- 1) 正确连接设备,接口3配置错误的线路认证类型。
- 2) 等待接口 1、2 与 DUT 建立邻接关系。
- 3) 在接口2数据库中插入LSP。
- 4) 关闭接口 2, 将接口 3 与 DUT 建立邻接关系。
- 5) 在接口 3 数据库中插入有效的 LSP。

预期结果:

步骤 3 后验证 LSP 在接口 1 数据库中。 步骤 5 后验证 LSP 不在接口 1 数据库中。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(4) IS-IS L1 区域 LSP OSI 认证成功测试

测试编号: 96

测试项目: IS-IS2_c_area_LSP_OSIauthentication_is_OK

测试目的:验证 DUT 中认证功能 (区域)。

测试依据: ISO/IEC 10589 7.3.17.1.1.h

测试配置:测试连接3

测试过程:

- 1) 正确连接设备,接口3配置缺少的区域认证口令。
- 2) 等待接口 1、2 与 DUT 建立邻接关系。
- 3) 在接口2数据库中插入 LSP。
- 4) 关闭接口 2, 将接口 3 与 DUT 建立邻接关系。
- 5) 在接口3数据库中插入有效的 LSP。

预期结果:

步骤 3 后验证 LSP 在接口 1 数据库中。

步骤 5 后验证 LSP 不在接口 1 数据库中。

测试说明:

(5) IS-IS L1 区域 LSP OSI 认证失败测试 1

测试编号: 97

测试项目: IS-IS2_c_area_LSP_OSIauthentication_is_BAD1

测试目的:验证 DUT 中认证功能 (区域)。

测试依据: ISO/IEC 10589 7.3.17.1.1.h

测试配置:测试连接3

测试过程:

- 1) 正确连接设备,接口3配置错误的线路认证口令。
- 2) 等待接口 1、2 与 DUT 建立邻接关系。
- 3) 在接口2数据库中插入LSP。
- 4) 关闭接口 2、将接口 3 与 DUT 建立邻接关系。
- 5) 在接口 3 数据库中插入有效的 LSP。

预期结果:

步骤 3 后验证 LSP 在接口 1 数据库中。

步骤 5 后验证 LSP 不在接口 1 数据库中。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(6) IS-IS L1 区域 LSP OSI 认证失败测试 2

测试编号: 98

测试项目: IS-IS2_c_area_LSP_OSIauthentication is BAD2

测试目的:验证 DUT 中认证功能 (区域)。

测试依据: ISO/IEC 10589 7.3.17.1.1.h

测试配置:测试连接3

测试过程:

- 1) 正确连接设备,接口3配置错误的区域认证类型。
- 2) 等待接口 1、2 与 DUT 建立邻接关系。
- 3) 在接口2数据库中插入LSP。
- 4) 关闭接口 2、将接口 3 与 DUT 建立邻接关系。
- 5) 在接口 3 数据库中插入有效的 LSP。

预期结果:

步骤 3 后验证 LSP 在接口 1 数据库中。

步骤 5 后验证 LSP 不在接口 1 数据库中。

测试说明:

(7) IS-IS L1 区域 CSNP OSI 认证成功测试

测试编号:99

测试项目: IS-IS2_c_area_CSNP_OSIauthentication_is_OK

测试目的: 验证 DUT 中认证功能 (区域 CSNP)。

测试依据: ISO/IEC 10589 7.3.20.1.1.h

测试配置:测试连接3

测试过程:

- 1) 正确连接设备,接口3配置缺少的区域认证口令。
- 2) 等待接口 1、2 与 DUT 建立邻接关系。
- 3) 在接口 2 数据库中插入 LSP。
- 4) 关闭接口 2、 将接口 3 与 DUT 建立邻接关系。
- 5) 在接口3数据库中插入有效的 LSP。

预期结果:

步骤 3 后验证 LSP 在接口 1 数据库中。

步骤 5 后验证 LSP 不在接口 1 数据库中。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(8) IS-IS L1 区域 CSNP OSI 认证失败测试 1

测试编号: 100

测试项目: IS-IS2_c_area_CSNP_OSIauthentication_is_BAD1

测试目的:验证 DUT 中认证功能 (区域 CSNP)。

测试依据: ISO/IEC 10589 7.3.20.1.1.h

测试配置:测试连接3

测试过程:

- 1) 正确连接设备,接口3配置错误的线路认证口令。
- 2) 等待接口 1、2 与 DUT 建立邻接关系。
- 3) 在接口2数据库中插入LSP。
- 4) 关闭接口 2, 将接口 3 与 DUT 建立邻接关系。
- 5) 在接口 3 数据库中插入有效的 LSP。

预期结果:

步骤 3 后验证 LSP 在接口 1 数据库中。

步骤 5 后验证 LSP 不在接口 1 数据库中。

测试说明:

(9) IS-IS L1 区域 CSNP OSI 认证失败测试 2

测试编号: 101

测试项目: IS-IS2_c_area_CSNP_OSIauthentication_is_BAD2

测试目的:验证 DUT 中认证功能 (区域 CSNP)。

测试依据: ISO/IEC 10589 7.3.20.1.1.h

测试配置: 测试连接3

测试过程:

- 1) 正确连接设备,接口3配置错误的区域认证类型。
- 2) 等待接口 1、2 与 DUT 建立邻接关系。
- 3) 在接口2数据库中插入LSP。
- 4) 关闭接口 2, 将接口 3 与 DUT 建立邻接关系。
- 5) 在接口 3 数据库中插入有效的 LSP。

预期结果:

步骤 3 后验证 LSP 在接口 1 数据库中。

步骤 5 后验证 LSP 不在接口 1 数据库中。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

13 IS-IS L2 OSI 认证

(1) IS-IS L2 路由域 LSP OSI 认证成功测试

测试编号: 102

测试项目: IS-IS2_c_Domain_LSP_OSIauthentication_is_OK

测试目的:验证 DUT 中认证功能 (路由域)。

测试依据: ISO/IEC 10589 7.3.17.1.1.i

测试配置:测试连接3

测试过程:

- 1) 正确连接设备,接口3配置缺少的路由域认证口令。
- 2) 等待接口1、2与 DUT 建立邻接关系。
- 3) 在接口2数据库中插入 LSP。
- 4) 关闭接口 2、将接口 3 与 DUT 建立邻接关系。
- 5) 在接口 3 数据库中插入有效的 LSP。

预期结果:

步骤3后验证LSP在接口1数据库中。

步骤 5 后验证 LSP 不在接口 1 数据库中。

测试说明:

(2) IS-IS L2 路由域 LSP OSI 认证失败测试 1

测试编号: 103

测试项目: IS-IS2 c Domain LSP OSIauthentication is BAD1

测试目的: 验证 DUT 中认证功能(路由域)。

测试依据: ISO/IEC 10589 7.3.17.1.1.i

测试配置:测试连接3

测试过程:

- 1) 正确连接设备、接口3配置错误的路由域认证口令。
- 2) 等待接口 1、2 与 DUT 建立邻接关系。
- 3) 在接口2数据库中插入LSP。
- 4) 关闭接口 2, 将接口 3 与 DUT 建立邻接关系。
- 5) 在接口3数据库中插入有效的 LSP。

预期结果:

步骤 3 后验证 LSP 在接口 1 数据库中。

步骤 5 后验证 LSP 不在接口 1 数据库中。

测试说明:

判定原则:测试结果符合预期结果则通过,否则不通过。

(3) IS-IS L2 路由域 LSP OSI 认证失败测试 2

测试编号: 104

测试项目: IS-IS2_c_Domain_LSP_OSIauthentication_is_BAD2

测试目的: 验证 DUT 中认证功能 (路由域)。

测试依据: ISO/IEC 10589 7.3.17.1.1.i

测试配置:测试连接3

测试过程:

- 1) 正确连接设备,接口3配置错误的路由域认证类型。
- 2) 等待接口 1、2 与 DUT 建立邻接关系。
- 3) 在接口2数据库中插入LSP。
- 4) 关闭接口 2, 将接口 3 与 DUT 建立邻接关系。
- 5) 在接口 3 数据库中插入有效的 LSP。

预期结果:

步骤 3 后验证 LSP 在接口 1 数据库中。

步骤 5 后验证 LSP 不在接口 1 数据库中。

测试说明:

(4) IS-IS L2 链路 OSI 认证成功测试

测试编号: 105

测试项目: IS-IS2_c_link_OSIauthentication_is_OK

测试目的:验证 DUT 中认证功能 (link)。

测试依据: ISO/IEC 10589 8.4.3.1.c

测试配置:测试连接3

测试过程:

- 1) 正确连接设备,接口3配置缺少的 link 认证口令。
- 2) 等待接口 1、2 与 DUT 建立邻接关系。
- 3) 在接口2数据库中插入LSP。
- 4) 关闭接口 2、将接口 3 与 DUT 建立邻接关系。
- 5) 在接口3数据库中插入有效的 LSP。

预期结果:

步骤 3 后验证 LSP 在接口 1 数据库中。

步骤 5 后验证 LSP 不在接口 1 数据库中。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(5) IS-IS L2 链路 OSI 认证失败测试 1

测试编号: 106

测试项目: IS-IS2_c_link_OSIauthentication_is_BAD2

测试目的:验证 DUT 中认证功能 (link)。

测试依据: ISO/IEC 10589 8.4.3.1.c

测试配置:测试连接3

测试过程:

- 1) 正确连接设备,接口3配置错误的 link 认证口令。
- 2) 等待接口 1、2 与 DUT 建立邻接关系。
- 3) 在接口2数据库中插入LSP。
- 4) 关闭接口 2、将接口 3 与 DUT 建立邻接关系。
- 5) 在接口 3 数据库中插入有效的 LSP。

预期结果:

步骤 3 后验证 LSP 在接口 1 数据库中。

步骤 5 后验证 LSP 不在接口 1 数据库中。

测试说明:

(6) IS-IS I.2 链路 OSI 认证失败测试 2

测试编号: 107

测试项目: IS-IS2_c_link_OSIauthentication_is_BAD2

测试目的:验证 DUT 中认证功能 (link)。

测试依据: ISO/IEC 10589 8.4.3.1.c

测试配置:测试连接3

测试讨程,

- 1) 正确连接设备,接口3配置错误的 link 认证类型。
- 2) 等待接口 1、2 与 DUT 建立邻接关系。
- 3) 在接口2数据库中插入 LSP。
- 4) 关闭接口 2, 将接口 3 与 DUT 建立邻接关系。
- 5) 在接口 3 数据库中插入有效的 LSP。

预期结果:

步骤 3 后验证 LSP 在接口 1 数据库中。

步骤 5 后验证 LSP 不在接口 1 数据库中。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(7) IS-IS L2 路由域 CSNP OSI 认证成功测试

测试编号: 108

测试项目: IS-IS2_c_Domain_CSNP_OSIauthentication_is_OK

测试目的:验证 DUT 中认证功能 (路由域)。

测试依据: ISO/IEC 10589 7.3.17.1.1.i

测试配置:测试连接3

测试过程:

- 1) 正确连接设备,接口3配置缺少的路由域认证口令。
- 2) 等待接口 1、2 与 DUT 建立邻接关系。
- 3) 在接口2数据库中插入LSP。
- 4) 关闭接口 2, 将接口 3 与 DUT 建立邻接关系。
- 5) 在接口 3 数据库中插入有效的 LSP。

预期结果:

步骤 3 后验证 LSP 在接口 1 数据库中。

步骤 5 后验证 LSP 不在接口 1 数据库中。

测试说明:

(8) IS-IS L2 路由域 CSNP OSI 认证失败测试 1

测试编号: 109

测试项目: IS-IS2_c_Domain_CSNP_OSIauthentication_is_BAD1

测试目的:验证 DUT 中认证功能 (路由域)。

测试依据: ISO/IEC 10589 7.3.17.1.1.i

测试配置:测试连接3

测试过程:

- 1) 正确连接设备,接口3配置错误的路由域认证口令。
- 2) 等待接口 1、2 与 DUT 建立邻接关系。
- 3) 在接口2数据库中插入LSP。
- 4) 关闭接口 2, 将接口 3 与 DUT 建立邻接关系。
- 5) 在接口 3 数据库中插入有效的 LSP。

预期结果:

步骤 3 后验证 LSP 在接口 1 数据库中。

步骤 5 后验证 LSP 不在接口 1 数据库中。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(9) IS-IS L2 路由域 CSNP OSI 认证失败测试 2

测试编号: 110

测试项目: IS-IS2 c Domain CSNP OSIauthentication is BAD2

测试目的:验证 DUT 中认证功能 (路由域)。

测试依据: ISO/IEC 10589 7.3.17.1.1.i

测试配置: 测试连接3

测试过程:

- 1) 正确连接设备、接口3配置错误的路由域认证类型。
- 2) 等待接口 1、2 与 DUT 建立邻接关系。
- 3) 在接口2数据库中插入 LSP。
- 4) 关闭接口 2, 将接口 3 与 DUT 建立邻接关系。
- 5) 在接口 3 数据库中插入有效的 LSP。

预期结果:

步骤 3 后验证 LSP 在接口 1 数据库中。

步骤 5 后验证 LSP 不在接口 1 数据库中。

测试说明:

14 IS-IS L1 广播

(1) IS-IS L1 广播网邻接关系建立测试

测试编号: 111

测试项目: IS-IS1_c1_adjaceny_w_matching_area

测试目的: 验证在广播网络上能够正确建立邻接关系。

测试依据: ISO/TEC 10589 8.4.3.1

测试配置:测试连接3

测试过程:

- 1) 正确连接设备, 使其配置在同一 Area 中。
- 2) 等待接口1与 DUT 建立邻接关系。

预期结果:

步骤2后验证接口1邻接关系建立成功。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(2) IS-IS L1 广播网邻接关系建立失败测试 1

测试编号: 112

测试项目: IS-IS1_c1_adjaceny_wo_matching_area

测试目的: 验证在广播网络上不同 area 无法建立邻接关系。

测试依据: ISO/IEC 10589 8.4.3.1

测试配置:测试连接3

测试过程:

- 1) 正确连接设备,使其配置在不同 Area 中。
- 2) 等待接口1与 DUT 建立邻接关系。

预期结果:

步骤 2 后验证接口 1 邻接关系建立不成功。

测试说明:

(3) IS-IS L1 广播网邻接关系建立失败测试 2

测试编号: 113

测试项目: IS-IS1_c1_L1_no_adjacency_w_L2

测试目的,验证在广播网络上不同 Level 间无法建立邻接关系。

测试依据: ISO/IEC 10589 8.4.1

测试配置: 测试连接3

测试过程:

- 1) 正确连接设备。
- 2) 接口1与DUT不在同一level中,接口2与DUT在相同Level中,建立邻接关系。

预期结果:

步骤 2 后验证接口 1 邻接关系建立不成功,接口 2 与 DUT 邻接关系建立成功。

测试说明:

判定原则:测试结果符合预期结果则通过,否则不通过。

(4) IS-IS L1 广播网高优先级选举获胜测试

测试编号: 114

测试项目: IS-IS1_c_DUT_win_priority_election

测试目的:验证较高的优先级能够获胜选举。

测试依据: ISO/IEC 10589 8.4.6.1

测试配置:测试连接3

测试过程:

- 1) 正确连接设备,配置接口1优先级较低。
- 2) 等待接口1与DUT建立邻接关系。

预期结果:

步骤 2 后验证 DUT 发送伪节点 LSP。

测试说明:

(5) IS-IS L1 广播网大 MAC 地址选举获胜测试

测试编号: 115

测试项目: IS-IS1 c DUT win MACaddr_election

测试目的:验证优先级相同时较大的 MAC 地址能够获胜选举。

测试依据: ISO/IEC 10589 8.4.6.1

测试配置:测试连接3

测试过程:

1) 正确连接设备,配置相同的优先级,接口 1 MAC 地址较小。

2) 等待接口1与 DUT 建立邻接关系。

预期结果:

步骤 2 后验证 DUT 发送伪节点 LSP。

测试说明:

判定原则:测试结果符合预期结果则通过,否则不通过。

(6) IS-IS L1 广播网低优先级选举失败测试

测试编号: 116

测试项目: IS-IS1_c_DUT_loses_priority_election

测试目的: 验证较高的优先级能够获胜选举。

测试依据: ISO/IEC 10589 8.4.6.1

测试配置: 测试连接3

测试过程:

1) 正确连接设备,配置接口1优先级较高。

2) 等待接口1与 DUT 建立邻接关系。

预期结果:

步骤 2 后验证 DUT 不发送伪节点 LSP。

测试说明:

(7) IS-IS L1 广播网小 MAC 地址选举失败测试

测试编号: 117

测试项目: IS-IS1 c DUT loses MACaddr election

测试目的:验证优先级相同时较大的 MAC 地址能够获胜选举。

测试依据: ISO/IEC 10589 8.4.6.1

测试配置:测试连接3

测试过程:

- 1) 正确连接设备,配置相同的优先级,接口1 MAC 地址较大。
- 2) 等待接口1与 DUT 建立邻接关系。

预期结果:

步骤 2 后验证 DUT 不发送伪节点 LSP。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(8) IS-IS L1 广播网指派路由器发送 CSNP 测试

测试编号: 118

测试项目: IS-IS1_c_periodic_DIS_CSNP

测试目的:验证广播链路上指派路由器能够正确发送 CSNP。

测试依据: ISO/IEC 10589 7.3.20

测试配置:测试连接3

测试过程:

- 1) 正确连接设备。
- 2) 等待接口1与 DUT 建立邻接关系。

预期结果:

步骤 2 后验证 DUT 获胜 DIS 选举且周期性发送 CSNP。

测试说明:

(9) IS-IS L1 广播网非 DIS PSNP 发送测试

测试编号: 119

测试项目: IS-IS1_c_periodic_nonDIS_PSNP

测试目的:验证广播链路上能够正确发送 PSNP。

测试依据: ISO/IEC 10589 7.3.20.3

测试配置:测试连接3

测试过程:

- 1) 正确连接设备,接口1优先级较高。
- 2) 等待接口1与 DUT 建立邻接关系。
- 3) 在接口1数据库插入有效的 LSP, 并且不洪泛。

预期结果:

步骤 2 后验证接口 1 获胜 DIS 选举。

步骤 3 后等待足够长的时间后验证 DUT 能够发送 PSNP。

测试说明:

判定原则:测试结果符合预期结果则通过,否则不通过。

(10) IS-IS L1 广播网选举失败路由器不发送 CSNP 测试

测试编号: 120

测试项目: IS-IS1_c_election_loser_send_no_CSNP

测试目的:验证广播链路上 DIS 选举失败者不发送 CSNP。

测试依据: ISO/IEC 10589 7.3.20

测试配置:测试连接3

测试过程:

- 1) 正确连接设备,接口1优先级较高。
- 2) 等待接口1与 DUT 建立邻接关系。

预期结果:

步骤 2 后验证接口 1 获胜 DIS 选举。

步骤 3 后等待足够长的时间后验证 DUT 不发送 CSNP。

测试说明:

(11) IS-IS L1 广播网选举获胜不发送 PSNP 测试

测试编号: 121

测试项目·IS-IS1 c election winner sends no PSNPs

测试目的: 验证广播链路上 DIS 选举获胜者不发送 PSNP。

测试依据: ISO/IEC 10589 7.3.20

测试配置:测试连接3

测试过程:

- 1) 正确连接设备,接口1优先级较低。
- 2) 等待接口 1 与 DUT 建立邻接关系。
- 3) 在接口1数据库插入有效的 LSP, 并且不洪泛。

预期结果:

步骤 2 后验证接口 1 获胜 DIS 选举。

步骤 3 后等待足够长的时间后验证 DUT 不发送 PSNP。

测试说明:

判定原则:测试结果符合预期结果则通过,否则不通过。

(12) IS-IS L1 广播链路上正确洪泛新的 LSP 测试

测试编号: 122

测试项目: IS-IS1_c_flood_new_LSP

测试目的:验证广播链路上正确洪泛新的 LSP。

测试依据: ISO/IEC 10589 7.3.17.4

测试配置:测试连接3

测试过程:

- 1) 正确连接设备,接口1优先级较高。
- 2) 等待接口 1、2 与 DUT 建立邻接关系。
- 3) 在接口2数据库插入有效的 LSP, 并且洪泛。

预期结果:

步骤2后验证接口1、2邻接关系建立成功。

步骤 3 后等待足够长的时间, LSP 出现在接口 1 数据库中。

测试说明:

(13) IS-IS L1 广播链路上正确请求最新版本的 LSP 测试

测试编号: 123

测试项目: IS-IS1_c_request_replacement_LSP

测试目的:验证广播链路上正确请求最新版本的 LSP。

测试依据: ISO/IEC 10589 7.3.20.1.2

测试配置:测试连接3

测试过程:

- 1) 正确连接设备。
- 2) 在接口 1 插入序号为 10 的 LSP, 接口 2 插入序号为 100 的 LSP。
- 3) 等待接口1与 DUT 建立邻接关系。
- 4) 等待接口 2 与 DUT 建立邻接关系。

预期结果:

步骤 4 后验证 DUT 发送 PSNP 请求最新版本的 LSP。

测试说明:

判定原则:测试结果符合预期结果则通过,否则不通过。

(14) IS-IS L1 广播链路上正确请求丢失的 LSP 测试

测试编号: 124

测试项目: IS-IS1_c_request_missing_LSP

测试目的:验证广播链路上正确请求丢失的 LSP。

测试依据: ISO/IEC 10589 7.3.20.1.2

测试配置: 测试连接3

测试过程:

- 1) 正确连接设备。
- 2) 在接口 2 中插入有效的 LSP, 不洪泛。
- 3) 等待接口 1 与 DUT 建立邻接关系,等待接口 2 与 DUT 建立邻接关系。

预期结果:

步骤 3 后验证邻接关系建立, DUT 发送 PSNP 请求 LSP, 接口 1 收到 LSP。

测试说明:

(15) IS-IS L1 广播链路上正确提供邻居丢失的 LSP 测试

测试编号: 125

测试项目: IS-IS1_c_supply_missing_LSP

测试目的:验证广播链路上正确提供邻居丢失的 LSP。

测试依据: ISO/IEC 10589 7.3.20.1.2

测试配置:测试连接3

测试过程:

- 1) 正确连接设备。
- 2) 等待接口1与 DUT 建立邻接关系。
- 3) 在接口 2 插入接口 1 数据库中的 LSP。
- 4) 等待接口 2 与 DUT 建立邻接关系。

预期结果:

步骤 4 后验证接口 2 收到丢失的 LSP。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(16) IS-IS L1 广播链路上忽略重复的 ISP 测试

测试编号: 126

测试项目: IS-IS1_c_ignore_same_LSP

测试目的:验证广播链路上忽略重复的 LSP。

测试依据:

测试配置:测试连接3

测试过程:

- 1) 正确连接设备。
- 2) 等待接口1与 DUT 建立邻接关系。
- 3) 在接口 1 插入有效的 LSP。
- 4) 在接口2数据库插入相同的 LSP。
- 5) 等待接口 2 与 DUT 建立邻接关系。

预期结果:

步骤 5 后验证接口 2 没有收到 PSNP。

测试说明:

(17) IS-IS L1 广播链路上忽略较低版本的 LSP 测试

测试编号: 127

测试项目: IS-IS1_c_ignore_older_LSP

测试目的:验证广播链路上忽略较低版本的 LSP。

测试依据: ISO/IEC 10589 7.3.20.1.2

测试配置:测试连接3

测试过程:

- 1) 正确连接设备, 令接口 2 成为 DIS。
- 2) 等待接口 1 与 DUT 建立邻接关系。
- 3) 在接口 1 插入有效的 LSP。
- 4) 在接口2数据库中插入相同的 LSP, 序列号较小。
- 5) 等待接口 2 与 DUT 建立邻接关系。

预期结果:

步骤 5 后验证接口 2 没有收到 PSNP、接口 2 数据库中的 LSP 被更新。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(18) IS-IS L1 广播链路上 DUT 发送 CSNP 测试

測试編号: 128

测试项目: IS-IS1_c_CSNP_generation

测试目的:验证广播链路上 DUT 发送 CSNP。

测试依据: ISO/IEC 10589 7.3.20

测试配置: 测试连接3

测试过程:

- 1) 正确连接设备。
- 2) 等待接口1与 DUT 建立邻接关系。
- 3) 在接口 1 插入有效的 LSP。
- 4) 等待接口 2 与 DUT 建立邻接关系。

预期结果:

步骤 4 后验证接口 2 收到 CSNP,接口 2 数据库被更新。

测试说明:

(19) IS-IS L1 广播链路上 DUT 发送多个 CSNP 测试

測试编号: 129

测试项目: IS-IS1_c_multiple_CSNP_generation

测试目的:验证广播链路上 DUT 发送多个 CSNP。

测试依据: ISO/IEC 10589 7.3,20

测试配置:测试连接3

测试过程:

- 1) 正确连接设备。
- 2) 等待接口1与 DUT 建立邻接关系。
- 3) 在接口 1 插入许多有效的 LSP。
- 4) 等待接口 2 与 DUT 建立邻接关系。

预期结果:

步骤 4 后验证接口 2 收到多个 CSNP,接口 2 数据库被更新。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(20) IS-IS L1 广播链路上 DUT 发送多个 PSNP 測试

测试编号: 130

测试项目: IS-IS1_c_send_PSNP_multiple

测试目的:验证广播链路上 DUT 发送多个 PSNP。

测试依据: ISO/IEC 10589 7.3.20.3

测试配置:测试连接3

测试过程:

- 1) 正确连接设备。
- 2) 在接口2数据库插入有效的 LSP, 不洪泛。
- 3)接口2与DUT建立邻接关系。
- 4) 等待接口1与 DUT 建立邻接关系。

预期结果:

步骤 4 后验证接口 2 收到多个 PSNP,接口 1 数据库被更新。

测试说明:

(21) IS-IS L1 广播链路上 DUT 不发显式的确认测试

测试编号: 131

测试项目: IS-IS1_c1_no_ack_new_LSP

测试目的: 验证广播链路上 DUT 不发显式的确认。

测试依据: ISO/IEC 10589 7.3.17.5

测试配置:测试连接3

测试过程:

- 1) 正确连接设备。
- 2)接口1与DUT建立邻接关系。
- 3) 在接口1数据库插入有效的 LSP, 不洪泛。
- 4) 等待接口1与DUT建立邻接关系。

预期结果:

步骤 4 后验证接口 1 没有收到 ack。

测试说明:

判定原则:测试结果符合预期结果则通过,否则不通过。

(22) IS-IS L1 广播链路上 DUT 发送较新的 ZRLT LSP 测试

测试编号: 132

测试项目: IS-IS1_c_receive_newer_ZRLT_LSP

测试目的:验证广播链路上 DUT 发送较新的 ZRLT LSP。

测试依据: ISO/IEC 10589 7.3.21.3.b

测试配置:测试连接3

测试过程:

- 1) 正确连接设备。
- 2) 接口1、2与 DUT 建立邻接关系。
- 3) 在接口2数据库中插入有效的 LSP。
- 4) 在接口2数据库中插入较新版本的同一个 ZRLT LSP。
- 5) 关闭接口1并删除 LSP。
- 6) 在接口 1 插人相同的 LSP。
- 7) 将接口1与 DUT 建立邻接关系。

预期结果:

步骤 3 后验证接口 1 收到 LSP。

步骤 4 后验证较新的 ZRLT LSP 洪泛到接口 1。

步骤7后接口1收到ZRLT LSP。

测试说明:

(23) IS-IS L1 广播链路上 DUT 发送相同的 ZRLT LSP 测试

测试编号: 133

测试项目: IS-IS1_c_receive_same_ZRLT_LSP

测试目的: 验证广播链路上 DUT 发送相同的 ZRLT LSP。

测试依据: ISO/IEC 10589 7.3.21.3.2

测试配置:测试连接3

测试讨程:

- 1) 正确连接设备。
- 2) 接口1、2与 DUT 建立邻接关系。
- 3) 在接口 2 数据库中插入有效的 LSP。
- 4) 在接口2数据库中插入同一个ZRLT LSP。
- 5) 删除接口1的LSP。
- 6) 在接口 2 插入相同的 ZRLT LSP。

预期结果:

步骤 3 后验证接口 1 收到 LSP。

步骤 4 后验证 ZRLT LSP 洪泛到接口 1。

步骤 6 后接口 1 没有收到 ZRLT LSP。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(24) IS-IS L1 广播链路上 DUT 发送较旧的 ZRLT LSP 测试

测试编号: 134

测试项目: IS-IS1_c_receive_older_ZRLT_LSP

测试目的: 验证广播链路上 DUT 发送较旧的 ZRLT LSP。

测试依据: ISO/IEC 10589 7.3.21.3.b.3

测试配置:测试连接3

测试过程:

- 1) 正确连接设备。
- 2) 接口1、2与 DUT 建立邻接关系。
- 3) 在接口 2 数据库中插入有效的 LSP, 剩余时间很短。
- 4) 在接口2数据库中插入同一个 ZRLT LSP, 序列号较小。

预期结果:

步骤3后验证接口1收到LSP。

步骤 4 后验证 ZRLT LSP 没有洪泛到接口 1。

测试说明:

(25) IS-IS L1 广播链路上收到丢失的 ZRLT LSP 测试

测试编号: 135

测试项目: IS-IS1 c receive missing ZRLT LSP

测试目的: 验证广播链路上收到丢失的 ZRLT LSP。

测试依据: ISO/IEC 10589 7.3.21.3.a

测试配置:测试连接3

测试过程:

- 1) 正确连接设备。
- 2)接口1、2与DUT建立邻接关系。
- 3) 在接口1数据库中插入 ZRLT 的 LSP. DUT 作为源 ID。
- 4) 在接口2数据库中插入同一个ZRLT LSP。

预期结果:

步骤 4 后验证 ZRLT LSP 没有洪泛到接口 1。

测试说明:

判定原则:测试结果符合预期结果则通过,否则不通过。

(26) IS-IS L1 广播链路上收到自己丢失的 ZRLT LSP 测试

测试编号: 136

测试项目: IS-IS1_c_receive_own_missing_ZRLT_LSP

测试目的:验证广播链路上收到自己丢失的 ZRLT LSP。

测试依据: ISO/IEC 10589 7.3.17.3.1

测试配置:测试连接3

测试过程:

- 1) 正确连接设备。
- 2) 接口1、2与 DUT 建立邻接关系。
- 3) 在接口1数据库中插入 ZRLT 的 LSP, DUT 作为源 ID。
- 4) 在接口2数据库中插入同一个 LSP, 不洪泛。

预期结果:

步骤 4 后验证 LSP 没有洪泛到接口 1。

测试说明:

(27) IS-IS L1 广播链路上收到丢失的 LSP 测试

测试编号: 137

测试项目: IS-IS1_c_receive_missing_LSP

测试目的:验证广播链路上收到丢失的 LSP。

测试依据: ISO/IEC 10589 7.3.17.1

测试配置: 测试连接3

测试过程:

- 1) 正确连接设备。
- 2) 接口1、2与 DUT 建立邻接关系。
- 3) 在接口2数据库中插入LSP。

预期结果:

步骤 3 后验证 LSP 洪泛到接口 1。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(28) IS-IS L1 广播链路上收到较新的 LSP 测试

测试编号: 138

测试项目: IS-IS1 c receive newer_LSP

测试目的:验证广播链路上收到丢失的 LSP。

测试依据: ISO/IEC 10589 7.3.17.4

测试配置:测试连接3

测试过程:

- 1) 正确连接设备。
- 2)接口1、2与DUT建立邻接关系。
- 3) 在接口2数据库中插入LSP。
- 4) 在接口2数据库中插入同一个较新的 LSP。

预期结果:

步骤 3 后验证 LSP 洪泛到接口 1。

步骤 4 后验证较新的 LSP 洪泛到接口 1。

测试说明:

(29) IS-IS L1 广播链路上收到相同的 LSP 测试

测试编号: 139

测试项目: IS-IS1_c_receive_same_LSP

测试目的:验证广播链路上收到相同的 LSP。

测试依据: ISO/IEC 10589 7.3.17.4.b

测试配置:测试连接3

测试过程:

- 1) 正确连接设备。
- 2)接口1、2与DUT建立邻接关系。
- 3) 在接口2数据库中插入LSP。
- 4) 在接口2数据库中插入同一个LSP。

预期结果:

步骤 3 后验证 LSP 洪泛到接口 1。

步骤 4 后验证 LSP 没有洪泛到接口 1。

测试说明:

判定原则:测试结果符合预期结果则通过,否则不通过。

(30) IS-IS L1 广播链路上收到较旧的 LSP 测试

测试编号: 140

测试项目: IS-IS1_c_receive_older_LSP

测试目的:验证广播链路上收到较旧的 LSP。

测试依据: ISO/IEC 10589 7.3.17.4

测试配置:测试连接3

测试过程:

- 1) 正确连接设备。
- 2)接口1、2与DUT建立邻接关系。
- 3) 在接口2数据库中插入LSP。
- 4) 在接口2数据库中插入同一个 LSP, 序号较小。

预期结果:

步骤 3 后验证 LSP 洪泛到接口 1。

步骤 4 后验证 LSP 没有洪泛到接口 1、接口 2 数据库被更新。

测试说明:

(31) IS-IS L1 广播链路上 DUT 忽略收到 CSNP 中的 ZRLT LSP 测试

测试编号: 141

测试项目: IS-IS1_c_ignore_CSNP_ZRLT_request

测试目的:验证广播链路上 DUT 忽略收到 CSNP 中的 ZRLT LSP。

测试依据: ISO/IEC 10589 7.3,20.1.2

测试配置:测试连接3

测试过程:

- 1) 正确连接设备。
- 2) 在接口2数据库中插入有效的 LSP 和 ZRLT LSP, 不洪泛。
- 3)接口1、2与DUT建立邻接关系。

预期结果:

步骤 3 后验证 ZRLT LSP 没有洪泛到接口 1, 其他 LSP 出现在接口 1 数据库中。

测试说明:

判定原则:测试结果符合预期结果则通过,否则不通过。

(32) IS-IS L1 广播链路上 DUT 忽略 CSNP 中序列号为 0 的 LSP 测试

测试编号: 142

测试项目: IS-IS1_c_ignore_CSNP_zero_seqNo_request

测试目的:验证广播链路上 DUT 忽略 CSNP 中序列号为 0 的 LSP。

测试依据: ISO/IEC 10589 7.3.20.1.2

测试配置,测试连接3

测试过程:

- 1) 正确连接设备。
- 2) 在接口 2 中插入有效的 LSP 和序列号为 0 的 LSP。
- 3)接口1、2与DUT建立邻接关系。

预期结果:

步骤 3 后验证有效的 LSP 洪泛到接口 1. 序列号为 0 的 LSP 没有洪泛。

测试说明:

(33) IS-IS L1 广播链路上 DUT 拒绝非邻接系统发出的 CSNP 测试

測试编号: 143

测试项目: IS-IS1 c reject CSNP from non adj system

测试目的:验证广播链路上 DUT 拒绝非邻接系统发出的 CSNP。

测试依据: ISO/IEC 10589 7.3.20.1.1.d.3

测试配置:测试连接3

测试讨程:

- 1) 正确连接设备,将接口 2 hold_time 配置得较大些,建立邻接关系后不会超时。
- 2)接口1、2与DUT建立邻接关系。
- 3) 增加接口2的 IIH 间隔,改变接口2的 MAC 地址。
- 4) 在接口2增加 LSP, 不洪泛。
- 5) 将接口2地址改回到原来。

预期结果:

步骤 4 后验证 DUT 没有请求 LSP。

步骤 5 后验证 DUT 向接口 2 请求 LSP。

测试说明:

判定原则:测试结果符合预期结果则通过,否则不通过。

(34) IS-IS L1 广播链路上 DUT 拒绝非邻接系统发出的 LSP 测试

测试编号: 144

测试项目: IS-IS1_c_reject_LSP_from_non_adj_system

测试目的:验证广播链路上 DUT 拒绝非邻接系统发出的 LSP。

测试依据: ISO/IEC 10589 7.3.17.1.1.f

测试配置:测试连接3

测试过程:

- 1) 正确连接设备、将接口 2 hold_time 配置得较大些、建立邻接关系后不会超时。
- 2)接口1、2与DUT 建立邻接关系。
- 3) 增加接口2的 IIH 间隔, 改变接口2的 MAC 地址。
- 4) 在接口 2 增加 LSP。
- 5) 将接口2的地址改回到原来。

预期结果:

步骤 4 后验证 DUT 数据库中没有接口 2 的 LSP。

步骤 5 后验证 DUT 数据库中存在接口 2 的 LSP。

测试说明:

(35) IS-IS L1 广播链路上 DUT 拒绝与 IIH 中没有 IP 地址的路由器建立邻接关系测试

测试编号: 145

测试项目: IS-IS1_c_ip_no_adj_wo_interface_address

测试目的: 验证广播链路上 DUT 拒绝与 IIH 中没有 IP 地址的路由器建立邻接关系。

测试依据: RFC1195 3.1

测试配置: 测试连接3

测试过程:

- 1) 正确连接设备, 将接口2定义IP地址, 接口3不定义IP地址。
- 2) 接口1、2与 DUT 建立邻接关系。
- 3) 在接口 2 增加 LSP。
- 4) 关闭接口 2, 打开接口 3。

预期结果:

步骤 3 后验证 DUT 数据库中有接口 2 的 LSP。

步骤 4 后验证没有建立邻接关系。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(36) IS-IS L1 广播链路上 DUT 拒绝与 IIH 中没有协议域的路由器建立邻接关系测试

测试编号: 146

测试项目: IS-IS1_c_ip_no_adj_wo_proto_support_field

测试目的:验证广播链路上 DUT 拒绝与 IIH 中没有协议域的路由器建立邻接关系。

测试依据: RFC1195 5.2

测试配置:测试连接3

测试过程:

- 1) 正确连接设备,将接口2定义IP地址,接口3不定义协议域。
- 2)接口1、2与DUT建立邻接关系。
- 3) 在接口 2 增加 LSP。
- 4) 关闭接口 2, 打开接口 3。

预期结果:

步骤 3 后验证 DUT 数据库中有接口 2 的 LSP。

步骤 4 后验证没有建立邻接关系。

测试说明:

(37) IS-IS L1 广播链路上 DUT 在选举 DIS 时清除原来的 LSP 测试

测试编号: 147

测试项目: IS-IS1_c_DIS_purge_LSP_on_election

测试目的: 验证广播链路上 DUT 在选举 DIS 时清除原来的 LSP。

测试依据: ISO/IEC 10589 8.4.6.2

测试配置:测试连接3

测试过程:

- 1) 正确连接设备、接口1优先级较低、接口2优先级较高。
- 2) 接口1、2与 DUT 建立邻接关系。
- 3) 关闭接口 2。

预期结果:

步骤 2 后验证邻接关系建立,接口1 收到接口 2 发出的伪节点 LSP。 步骤 3 后验证接口1 收到 ZRLP LSP。

测试说明:

判定原则:测试结果符合预期结果则通过,否则不通过。

(38) IS-IS L1 广播链路上 DUT 由 DR 变成非 DR 时清除 LSP 测试

测试编号: 148

测试项目: IS-IS1_c_DIS_purge_LSP_on_eresignation

测试目的:验证广播链路上 DUT 由 DR 变成非 DR 时清除 LSP。

测试依据: ISO/IEC 10589 7.2.3

测试配置: 测试连接3

测试过程:

- 1) 正确连接设备,接口1优先级较低,接口2优先级较高。
- 2)接口1与DUT建立邻接关系。
- 3)接口2与DUT建立邻接关系。

预期结果:

步骤 2 后验证邻接关系建立。

步骤 3 后验证接口 1 收到 ZRLP LSP。

测试说明:

(39) IS-IS L1 广播链路上 DUT LSP 序列号溢出后正常处理测试

测试编号: 149

测试项目: IS-IS1_c_LSP_seqNo_rollover

测试目的: 验证广播链路上 DUT LSP 序列号溢出后能够正常处理。

测试依据: ISO/IEC 10589 7.3.10

测试配置:测试连接3

测试过程:

- 1) 正确连接设备。
- 2)接口1与DUT建立邻接关系。
- 3) 在接口 1 插入最大序列号的 LSP。

预期结果:

步骤 3 后验证邻接关系重新建立、序列号从1 开始。

测试说明:

判定原则:测试结果符合预期结果则通过,否则不通过。

15 IS-IS L2 广播测试

(1) IS-IS L2 广播网邻接关系建立测试

测试编号: 150

测试项目: IS-IS2_c1_adjaceny_w_matching_area

测试目的:验证在广播网络上正确建立邻接关系。

测试依据: ISO/IEC 10589 8.4.3.1

测试配置:测试连接3

测试过程:

- 1) 正确连接设备, 使其配置在同一个 Area 中。
- 2) 等待接口 2 与 DUT 建立邻接关系。

预期结果:

步骤 2 后验证接口 2 邻接关系建立成功。

测试说明:

(2) IS-IS L2 广播网邻接关系建立失败测试 1

测试编号: 151

测试项目: IS-IS2_c1_L2_from_adjaceny_wo_matching_area

测试目的:验证在广播网络上的不同 Area 建立邻接关系。

测试依据: ISO/IEC 10589 8.4.3.1

测试配置:测试连接3

测试过程:

- 1) 正确连接设备、使其配置在不同的 Area 中。
- 2) 等待接口 2 与 DUT 建立邻接关系。

预期结果:

步骤 2 后验证接口 2 邻接关系建立失败。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(3) IS-IS L2 广播网邻接关系建立失败测试 2

测试编号: 152

测试项目: IS-IS2_c1_L1_no_adjacency_w_L2

测试目的:验证在广播网络上不同的 Level 间无法建立邻接关系。

测试依据: ISO/IEC 10589 8.4.1

测试配置: 测试连接3

测试过程:

- 1) 正确连接设备。
- 2)接口3与DUT不在同一level中,接口2与DUT在相同的Level中,建立邻接关系。

预期结果:

步骤 2 后验证接口 3 邻接关系建立不成功,接口 2 与 DUT 邻接关系建立成功。

测试说明:

(4) IS-IS L2 广播网高优先级选举获胜测试

测试编号: 153

测试项目: IS-IS2_c_DUT_win_priority_election

测试目的: 验证较高的优先级能够获胜选举。

测试依据: ISO/IEC 10589 8.4.6.1

测试配置:测试连接3

测试过程:

- 1) 正确连接设备,配置接口2优先级较低。
- 2) 等待接口 2 与 DUT 建立邻接关系。

预期结果:

步骤 2 后验证 DUT 发送伪节点 LSP。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(5) IS-IS L2 广播网大 MAC 地址选举获胜测试

测试编号: 154

测试项目: IS-IS2_c_DUT_win_MACaddr_election

测试目的:验证优先级向同时较大的 MAC 地址能够获胜选举。

测试依据: ISO/IEC 10589 8.4.6.1

测试配置:测试连接3

测试过程:

- 1) 正确连接设备,配置相同的优先级,接口2的 MAC 地址较小。
- 2) 等待接口 2 与 DUT 建立邻接关系。

预期结果:

步骤 2 后验证 DUT 发送伪节点 LSP。

测试说明:

(6) IS-IS L2 广播网低优先级选举失败测试

测试编号: 155

测试项目: IS-IS2_c_DUT_loses_priority_election

测试目的: 验证较高的优先级能够获胜选举。

测试依据: ISO/IEC 10589 8.4.6.1

测试配置:测试连接3

测试过程:

- 1) 正确连接设备,配置接口2优先级较低。
- 2) 等待接口 2 与 DUT 建立邻接关系。

预期结果:

步骤 2 后验证 DUT 不发送伪节点 LSP。

测试说明:

判定原则:测试结果符合预期结果则通过,否则不通过。

(7) IS-IS L2 广播网小 MAC 地址选举失败测试

测试编号: 156

测试项目: IS-IS2_c_DUT_loses_MACaddr_election

测试目的: 验证优先级向同时较大的 MAC 地址能够获胜选举。

测试依据: ISO/IEC 10589 8.4.6.1

测试配置:测试连接3

测试过程,

- 1) 正确连接设备,配置相同的优先级,接口2的 MAC 地址较大。
- 2) 等待接口 2 与 DUT 建立邻接关系。

预期结果:

步骤 2 后验证 DUT 不发送伪节点 LSP。

测试说明:

(8) IS-IS L2 广播网指派路由器发送 CSNP 测试

测试编号: 157

测试项目: IS-IS2_c_periodic_DIS_CSNP

测试目的:验证广播链路上指派路由器正确发送 CSNP。

测试依据: ISO/IEC 10589 7.3.20

测试配置,测试连接3

测试过程:

- 1) 正确连接设备。
- 2) 等待接口 2 与 DUT 建立邻接关系。

预期结果:

步骤 2 后验证 DUT 获胜 DIS 选举日周期性发送 CSNP。

测试说明:

判定原则:测试结果符合预期结果则通过,否则不通过。

(9) IS-IS L2 广播网非 DIS PSNP 发送测试

测试编号: 158

测试项目: IS-IS2_c_periodic_noDIS_PSNP

测试目的:验证广播链路上正确发送 PSNP。

测试依据: ISO/IEC 10589 7.3.20.3

测试配置: 测试连接3

测试过程:

- 1) 正确连接设备、接口2优先级较高。
- 2) 等待接口 2 与 DUT 建立邻接关系。
- 3) 在接口2数据库中插入有效的 LSP, 并且不洪泛。

预期结果:

步骤 2 后验证接口 2 获胜 DIS 选举。

步骤 3 后等待足够长的时间后验证 DUT 发送 PSNP。

测试说明:

(10) IS-IS L2 广播网选举失败路由器不发送 CSNP 测试

测试编号: 159

测试项目: IS-IS2_c_election_loser_send_no_CSNP

测试目的:验证广播链路上 DIS 选举失败者不发送 CSNP。

测试依据: ISO/IEC 10589 7.3.20

测试配置:测试连接3

测试过程:

- 1) 正确连接设备,接口2优先级较高。
- 2) 等待接口 2 与 DUT 建立邻接关系。

预期结果:

步骤 2 后验证接口 2 获胜 DIS 选举。

步骤 3 后等待足够长的时间后验证 DUT 不发送 CSNP。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(11) IS-IS L2 广播网选举获胜不发送 PSNP 测试

测试编号: 160

测试项目: IS-IS2_c_election_winner_sends_no_PSNPs

测试目的:验证广播链路上 DIS 选举成功者不发送 PSNP。

测试依据: ISO/IEC 10589 7.3.20

测试配置:测试连接3

测试过程:

- 1) 正确连接设备,接口2优先级较低。
- 2) 等待接口 2 与 DUT 建立邻接关系。
- 3) 在接口2数据库中插入有效的 LSP, 并且不洪泛。

预期结果:

步骤 2 后验证 DUT 获胜 DIS 选举。

步骤 3 后等待足够长的时间后验证 DUT 不发送 PSNP。

测试说明:

(12) IS-IS L2 广播链路上正确洪泛新的 LSP 测试

测试编号: 161

测试项目: IS-IS2 c flood new LSP

测试目的:验证广播链路上正确洪泛新的 LSP。

测试依据: ISO/IEC 10589 7.3.17.4

测试配置:测试连接3

测试过程:

- 1) 正确连接设备,接口1优先级较高。
- 2) 等待接口 1、2 与 DUT 建立邻接关系。
- 3) 在接口 2 数据库中插入有效的 LSP, 并且洪泛。

预期结果:

步骤 2 后验证接口 1、2 邻接关系建立成功。

步骤 3 后等待足够长的时间, LSP 出现在接口 1 数据库中。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(13) IS-IS L2 广播链路上正确请求最新版本的 LSP 测试

测试编号: 162

测试项目: IS-IS2_c_request_replacement_LSP

测试目的:验证广播链路上正确请求最新版本的 LSP。

测试依据: ISO/IEC 10589 7.3.20.1.2

测试配置:测试连接3

测试过程:

- 1) 正确连接设备。
- 2) 在接口 1 插入序号为 10 的 LSP, 接口 2 插入序号为 100 的 LSP。
- 3) 等待接口1与 DUT 建立邻接关系。
- 4) 等待接口 2 与 DUT 建立邻接关系。

预期结果:

步骤 4 后验证 DUT 发送 PSNP 请求最新版本的 LSP。

测试说明:

(14) IS-IS L2 广播链路上正确请求丢失的 LSP 测试

测试编号: 163

测试项目: IS-IS2 c request_missing_LSP

测试目的:验证广播链路上正确请求丢失的 LSP。

测试依据: ISO/IEC 10589 7.3.20.1.2

测试配置:测试连接3

测试过程:

- 1) 正确连接设备。
- 2) 在接口 2 插入有效的 LSP, 不洪泛。
- 3) 等待接口1与 DUT 建立邻接关系,等待接口2与 DUT 建立邻接关系。

预期结果:

步骤 3 后验证邻接关系建立, DUT 发送 PSNP 请求 LSP, 接口 1 收到 LSP。

测试说明:

判定原则:测试结果符合预期结果则通过,否则不通过。

(15) IS-IS L2 广播链路上正确提供邻居丢失的 LSP 测试

测试编号: 164

测试项目: IS-IS2_c_supply_missing_LSP

测试目的:验证广播链路上正确提供邻居丢失的 LSP。

测试依据: ISO/IEC 10589 7.3.20.1.2

测试配置: 测试连接3

测试过程:

- 1) 正确连接设备。
- 2) 等待接口1与 DUT 建立邻接关系。
- 3) 在接口 2 插入接口 1 数据库中的 LSP。
- 4) 等待接口 2 与 DUT 建立邻接关系。

预期结果:

步骤3后验证接口2收到丢失的LSP。

测试说明:

(16) IS-IS L2 广播链路上忽略重复的 LSP 测试

测试编号: 165

测试项目: IS-IS2 c ignore same LSP

测试目的:验证广播链路上忽略重复的 LSP。

测试依据:

测试配置:测试连接3

测试过程:

- 1) 正确连接设备。
- 2) 等待接口1与 DUT 建立邻接关系。
- 3) 在接口 1 插入有效的 LSP。
- 4) 在接口2数据库中插入相同的 LSP。
- 5) 等待接口 2 与 DUT 建立邻接关系。

预期结果:

步骤 3 后验证接口 2 没有收到 PSNP。

测试说明:

判定原则:测试结果符合预期结果则通过,否则不通过。

(17) IS-IS L2 广播链路上忽略较低版本的 LSP 测试

测试编号: 166

测试项目: IS-IS2 c ignore older LSP

测试目的:验证广播链路上忽略较低版本的 LSP。

测试依据: ISO/IEC 10589 7.3.20.1.2

测试配置:测试连接3

测试过程:

- 1) 正确连接设备。
- 2) 等待接口1与 DUT 建立邻接关系。
- 3) 在接口 1 插入有效的 LSP。
- 4) 在接口2数据库中插入相同的 LSP, 序列号较小。
- 5) 等待接口 2 与 DUT 建立邻接关系。

预期结果:

步骤 3 后验证接口 2 没有收到 PSNP、接口 2 数据库中的 LSP 被更新。

测试说明:

(18) IS-IS L2 广播链路上 DUT 发送 CSNP 测试

测试编号: 167

测试项目: IS-IS2_c_CSNP_generation

测试目的: 验证广播链路上 DUT 发送 CSNP。

测试依据: ISO/IEC 10589 7.3.20

测试配置:测试连接3

测试过程:

- 1) 正确连接设备。
- 2) 等待接口1与 DUT 建立邻接关系。
- 3) 在接口 1 插入有效的 LSP。
- 4) 等待接口 2 与 DUT 建立邻接关系。

预期结果:

步骤 3 后验证接口 2 收到 CSNP、接口 2 数据库被更新。

测试说明:

判定原则:测试结果符合预期结果则通过,否则不通过。

(19) IS-IS L2 广播链路上 DUT 发送多个 CSNP 测试

测试编号: 168

测试项目: IS-IS2_c_multiple_CSNP_generation

测试目的:验证广播链路上 DUT 发送多个 CSNP。

测试依据: ISO/IEC 10589 7.3.20

测试配置: 测试连接3

测试过程:

- 1) 正确连接设备。
- 2) 等待接口1与 DUT 建立邻接关系。
- 3) 在接口 1 插入许多有效的 LSP。
- 4) 等待接口 2 与 DUT 建立邻接关系。

预期结果:

步骤3后验证接口2收到多个CSNP、接口2数据库被更新。

测试说明:

(20) IS-IS L2 广播链路上 DUT 发送多个 PSNP 测试

测试编号: 169

测试项目: IS-IS2_c_send_PSNP_multiple

测试目的:验证广播链路上 DUT 发送多个 PSNP。

测试依据: ISO/IEC 10589 7.3.20.3

测试配置:测试连接3

测试过程:

- 1) 正确连接设备。
- 2) 在接口2数据库中插入有效的 LSP, 不洪泛。
- 3) 接口 2 与 DUT 建立邻接关系。
- 4) 等待接口1与 DUT 建立邻接关系。

预期结果:

步骤 3 后验证接口 2 收到 PSNP,接口 1 数据库被更新。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(21) IS-IS L2 广播链路上 DUT 不发显式的确认测试

测试编号: 170

测试项目: IS-IS2_c1_no_ack_new_LSP

测试目的:验证广播链路上 DUT 不发显式的确认。

测试依据: ISO/IEC 10589 7.3.17.5

测试配置: 测试连接3

测试过程:

- 1) 正确连接设备。
- 2) 接口1与 DUT 建立邻接关系。
- 3) 在接口1数据库中插入有效的 LSP, 不洪泛。
- 4) 等待接口1与 DUT 建立邻接关系。

预期结果:

步骤 3 后验证接口 1 没有收到 ack。

测试说明:

(22) IS-IS L2 广播链路上 DUT 发送较新的 ZRLT LSP 测试

测试编号: 171

测试项目: IS-IS2_c_receive_newer_ZRLT_LSP

测试目的:验证广播链路上 DUT 发送较新的 ZRLT LSP。

测试依据: ISO/IEC 10589 7.3.21.3.b

测试配置:测试连接3

测试过程:

- 1) 正确连接设备。
- 2)接口1、2与DUT建立邻接关系。
- 3) 在接口2数据库中插入有效的 LSP。
- 4) 在接口 2 数据库中插入较新版本的同一个 ZRLT LSP。
- 5) 关闭接口1并删除 LSP。
- 6) 在接口 1 插入相同的 LSP。
- 7) 将接口1与 DUT 建立邻接关系。

预期结果:

步骤3后验证接口1收到LSP。

步骤 4 后验证较新的 ZRLT LSP 洪泛到接口 1。

步骤7后接口1收到ZRLT LSP。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(23) IS-IS L2 广播链路上 DUT 发送相同的 ZRLT LSP 测试

测试编号: 172

测试项目: IS-IS2 c receive_same_ZRLT_LSP

测试目的:验证广播链路上 DUT 发送相同的 ZRLT LSP。

测试依据: ISO/IEC 10589 7.3.21.3.2

测试配置: 测试连接3

测试过程:

- 1) 正确连接设备。
- 2) 接口1、2与 DUT 建立邻接关系。
- 3) 在接口 2 数据库中插入有效的 LSP。
- 4) 在接口2数据库中插入同一个ZRLT LSP。
- 5) 删除接口1的LSP。
- 6) 在接口 2 插入相同的 ZRLT LSP。

(续表)

预期结果:

步骤3后验证接口1收到LSP。

步骤 4 后验证 ZRLT LSP 洪泛到接口 1。

步骤 6 后接口 1 没有收到 ZRLT LSP。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(24) IS-IS L2 广播链路上 DUT 发送较旧的 ZRLT LSP 测试

测试编号: 173

测试项目: IS-IS2_c_receive_older_ZRLT_LSP

测试目的:验证广播链路上 DUT 发送较旧的 ZRLT LSP。

测试依据: ISO/IEC 10589 7.3.21.3.b.3

测试配置:测试连接3

测试过程:

- 1) 正确连接设备。
- 2) 接口1、2与 DUT 建立邻接关系。
- 3) 在接口2数据库中插入有效的 LSP, 剩余时间很短。
- 4) 在接口2数据库中插入同一个ZRLT LSP, 序列号较小。

预期结果:

步骤 3 后验证接口 1 收到 LSP。

步骤 4 后验证 ZRLT LSP 没有洪泛到接口 1。

测试说明:

(25) IS-IS L2 广播链路上收到丢失的 ZRLT LSP 测试

测试编号: 174

测试项目: IS-IS2_c_receive_missing_ZRLT_LSP

测试目的:验证广播链路上收到丢失的 ZRLT LSP。

测试依据: ISO/IEC 10589 7.3.21.3.a

测试配置:测试连接3

测试过程:

- 1) 正确连接设备。
- 2)接口1、2与DUT建立邻接关系。
- 3) 在接口1数据库中插入 ZRLT 的 LSP, DUT 作为源 ID。
- 4) 在接口2数据库中插入同一个 ZRLT LSP。

预期结果:

步骤 4 后验证 ZRLT LSP 没有洪泛到接口 1。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(26) IS-IS L2 广播链路上收到自己丢失的 ZRLT LSP 测试

测试编号: 175

测试项目: IS-IS2_c_receive_own_missing_ZRLT_LSP

测试目的:验证广播链路上收到自己丢失的 ZRLT LSP。

测试依据: ISO/IEC 10589 7.3.17.3.1

测试配置:测试连接3

测试过程:

- 1) 正确连接设备。
- 2)接口1、2与DUT建立邻接关系。
- 3) 在接口 1 数据库中插入 ZRLT 的 LSP, DUT 作为源 ID。
- 4) 在接口2数据库中插入同一个 LSP, 不洪泛。

预期结果:

步骤 4 后验证 LSP 没有洪泛到接口 1。

测试说明:

(27) IS-IS L2 广播链路上收到丢失的 LSP 测试

测试编号: 176

测试项目: IS-IS2_c_receive_missing_LSP

测试目的: 验证广播链路上收到丢失的 LSP。

测试依据: ISO/IEC 10589 7.3.17.1

测试配置: 测试连接3

测试过程:

- 1) 正确连接设备。
- 2) 接口1、2与 DUT 建立邻接关系。
- 3) 在接口2数据库中插入LSP。

预期结果:

步骤 3 后验证 LSP 洪泛到接口 1。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(28) IS-IS L2 广播链路上收到较新的 LSP 测试

测试编号: 177

测试项目: IS-IS2_c_receive_newer_LSP

测试目的:验证广播链路上收到较新的 LSP。

测试依据: ISO/IEC 10589 7.3.17.4

测试配置:测试连接3

测试过程:

- 1) 正确连接设备。
- 2) 接口1、2与 DUT 建立邻接关系。
- 3) 在接口2数据库中插入LSP。
- 4) 在接口2数据库中插入同一个较新的 LSP。

预期结果:

步骤 3 后验证 LSP 洪泛到接口 1。

步骤 4 后验证较新的 LSP 洪泛到接口 1。

测试说明:

(29) IS-IS L2 广播链路上收到相同的 LSP 测试

测试编号: 178

测试项目: IS-IS2_c_receive_same_LSP

测试目的:验证广播链路上收到相同的 LSP。

测试依据: ISO/IEC 10589 7.3.17.4.b

测试配置:测试连接3

测试过程:

- 1) 正确连接设备。
- 2) 接口1、2与 DUT 建立邻接关系。
- 3) 在接口2数据库中插入LSP。
- 4) 在接口2数据库中插入同一个LSP。

预期结果:

步骤 3 后验证 LSP 洪泛到接口 1。

步骤 4 后验证 LSP 没有洪泛到接口 1。

测试说明:

判定原则:测试结果符合预期结果则通过,否则不通过。

(30) IS-IS L2 广播链路上收到较旧的 LSP 测试

测试编号: 179

测试项目: IS-IS2 c receive_older_LSP

测试目的:验证广播链路上收到较旧的 LSP。

测试依据: ISO/IEC 10589 7.3.17.4

测试配置:测试连接3

测试过程:

- 1) 正确连接设备。
- 2) 接口1、2与 DUT 建立邻接关系。
- 3) 在接口2数据库中插入 LSP。
- 4) 在接口2数据库中插入同一个LSP, 序号较小。

预期结果:

步骤 3 后验证 LSP 洪泛到接口 1。

步骤 4 后验证 LSP 没有洪泛到接口 1,接口 2 数据库被更新。

测试说明:

(31) IS-IS L2 广播链路上 DUT 忽略收到 CSNP 中的 ZRLT LSP 测试

测试编号: 180

测试项目: IS-IS2 c ignore_CSNP_ZRLT_request

测试目的: 验证广播链路上 DUT 忽略收到 CSNP 中的 ZRLT LSP。

测试依据: ISO/IEC 10589 7.3.20.1.2

测试配置:测试连接3

测试过程:

- 1) 正确连接设备。
- 2) 在接口2数据库中插入有效的 LSP 和 ZRLT LSP, 不洪泛。
- 3)接口1、2与DUT建立邻接关系。

预期结果:

步骤 3 后验证 ZRLT LSP 没有洪泛到接口 1, 其他 LSP 出现在接口 1 数据库中。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(32) IS-IS L2 广播链路上 DUT 忽略 CSNP 中序列号为 0 的 LSP 测试

测试编号: 181

测试项目: IS-IS2 c ignore_CSNP_zero_seqNo_request

测试目的:验证广播链路上 DUT 忽略 CSNP 中序列号为 0 的 LSP。

测试依据: ISO/IEC 10589 7.3.20.1.2

测试配置:测试连接3

测试过程:

- 1) 正确连接设备。
- 2) 在接口 2 中插入有效的 LSP 和序列号为 0 的 LSP。
- 3)接口1、2与DUT建立邻接关系。

预期结果:

步骤 3 后验证有效的 LSP 洪泛到接口 1, 序列号为 0 的 LSP 没有洪泛。

测试说明:

(33) IS-IS L2 广播链路 F DUT 拒绝非邻接系统发出的 CSNP 测试

测试编号: 182

测试项目: IS-IS2_c_reject_CSNP_from_non_adj_system

测试目的: 验证广播链路上 DUT 拒绝非邻接系统发出的 CSNP。

测试依据: ISO/IEC 10589 7.3.20.1.1.d.3

测试配置:测试连接3

测试过程:

- 1) 正确连接设备,将接口2的 hold_time 配置得较大些,建立邻接关系后不会超时。
- 2)接口1、2与DUT建立邻接关系。
- 3) 增加接口2的 IIH 间隔, 改变接口2的 MAC 地址。
- 4) 在接口2增加LSP, 不洪泛。
- 5) 将接口 2 地址改回到原来。

预期结果:

步骤 4 后验证 DUT 没有请求 LSP。

步骤 5 后验证 DUT 向接口 2 请求 LSP。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(34) IS-IS L2 广播链路上 DUT 拒绝非邻接系统发出的 LSP 测试

测试编号: 183

测试项目: IS-IS2_c_reject_LSP_from_non_adj_system

测试目的,验证广播链路上 DUT 拒绝非邻接系统发出的 LSP。

测试依据: ISO/IEC 10589 7.3.17.1.1.f

测试配置:测试连接3

测试过程:

- 1) 正确连接设备,将接口2的 hold_time 配置得较大些,建立邻接关系后不会超时。
- 2)接口1、2与DUT建立邻接关系。
- 3) 增加接口2的 IIH 间隔, 改变接口2的 MAC 地址
- 4) 在接口 2 增加 LSP。
- 5) 将接口 2 地址改回到原来。

预期结果:

步骤 4 后验证 DUT 数据库中没有接口 2 的 LSP。

步骤 5 后验证 DUT 数据库中存在接口 2 的 LSP。

测试说明:

(35) IS-IS L2 广播链路上 DUT 拒绝与 IIH 中没有 IP 地址的路由器建立邻接关系测试

测试编号: 184

测试项目: IS-IS2_c_ip_no_adj_wo_interface_address

测试目的:验证广播链路上 DUT 拒绝与 IIH 中没有 IP 地址的路由器建立邻接关系。

测试依据: RFC1195 3.1

测试配置:测试连接3

测试过程:

- 1) 正确连接设备,将接口2定义IP地址,接口3不定义IP地址。
- 2) 接口1、2与 DUT 建立邻接关系。
- 3) 在接口 2 增加 LSP。
- 4) 关闭接口 2、打开接口 3。

预期结果:

步骤 3 后验证 DUT 数据库中有接口 2 的 LSP。

步骤 4 后验证没有建立邻接关系。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(36) IS-IS L2 广播链路上 DUT 拒绝与 IIH 中没有协议域的路由器建立邻接关系测试

测试编号: 185

测试项目: IS-IS2_c_ip_no_adi_wo_proto_support_field

测试目的:验证广播链路上 DUT 拒绝与 IIH 中没有协议域的路由器建立邻接关系。

测试依据: RFC1195 5.2

测试配置: 测试连接3

测试过程:

- 1) 正确连接设备,将接口2定义IP地址,接口3不定义协议域。
- 2) 将接口1、2与 DUT 建立邻接关系。
- 3) 在接口 2 增加 LSP。
- 4) 关闭接口 2, 打开接口 3。

预期结果:

步骤 3 后验证 DUT 数据库中有接口 2 的 LSP。

步骤 4 后验证没有建立邻接关系。

测试说明:

(37) IS-IS L2 广播链路上 DUT 在选举 DIS 时清除原来的 LSP 测试

测试编号: 186

测试项目: IS-IS2_c_DIS_purge_LSP_on_election

测试目的: 验证广播链路上 DUT 在选举 DIS 时清除原来的 LSP。

测试依据: ISO/IEC 10589 8.4.6.2

测试配置:测试连接3

测试过程:

- 1) 正确连接设备,接口1优先级较低,接口2优先级较高。
- 2) 将接口 1、2 与 DUT 建立邻接关系。
- 3) 关闭接口 2。

预期结果:

步骤2后验证邻接关系建立,接口1收到接口2发出的伪节点LSP。 步骤4后验证接口1收到ZRLPLSP。

测试说明:

判定原则: 测试结果符合预期结果则通过, 否则不通过。

(38) IS-IS L2 广播链路上 DUT 由 DIS 变成非 DR 时清除 LSP 测试 K

测试编号: 187

测试项目: IS-IS2 c DIS purge LSP on eresignation

测试目的:广播链路上 DUT 由 DIS 变成非 DIS 时清除 LSP。

测试依据: ISO/IEC 10589 7.2.3

测试配置: 测试连接3

测试过程:

- 1) 正确连接设备,接口1优先级较低,接口2优先级较高。
- 2) 将接口1与 DUT 建立邻接关系。
- 3) 将接口 2 与 DUT 建立邻接关系。

预期结果:

步骤 2 后验证邻接关系建立。

步骤 4 后验证接口 1 收到 ZRLP LSP。

测试说明:

(39) IS-IS L2 广播链路上 DUT LSP 序列号溢出后正常处理测试

测试编号: 188

测试项目: IS-IS2_c_LSP_seqNo_rollover

测试目的: 验证广播链路上 DUT LSP 序列号溢出后正常处理。

测试依据: ISO/IEC 10589 7.3.10

测试配置: 测试连接3

测试过程:

- 1) 正确连接设备。
- 2) 将接口1与 DUT 建立邻接关系。
- 3) 在接口 1 插入最大序列号的 LSP。

预期结果:

步骤3后验证邻接关系重新建立,序列号从0开始。

测试说明: